
Robust statistics: A brief overview

Vishwanath, Saragadam Raja Venkata

May 7, 2015

Abstract

We look at the need for robust statistics as a powerful
tool to deal with outliers in experimental setup. In par-
ticular, we emphasize on the need for robust statistics,
methods to quantify robustness and some methods of
obtaining robust statistics.

1 Introduction

Modeling of physical processes is at most a good ap-
proximation of the actual underlying process. Hence,
any uncertainties in the model may lead to gross errors
in estimating parameters of the process. For example,

consider the sample mean, µ =
∑n
i=1 xi
n . Even if just

one of the value is very large, the estimate of µ is com-
pletely wrong.

Ideally, we need statistics that would overlook the ef-
fect of points which don’t seem to fit the model, which
we call the outliers. The goal of robust statistics is to
answer the issue of outliers in experimental data. Ro-
bust statistics as a tool helps in identifying the right pa-
rameter estimate which describes majority of the data.
Further, it also helps to identify the effect of individual
points, and hence the outliers.

To identify a statistic as robust, we want the follow-
ing properties:

1. The statistic has to be efficient. With sufficiently
large data, the statistic should converge to true
parameter value.

2. The statistic has to be stable. Small deviations
from the model assumption shouldn’t give wrong
estimates.

3. The statistic has to have large breakdown point.
A large deviation shouldn’t create a catastrophe.

The report is organized as follows. We first discuss
the theory which will aide the understanding of robust
statistic. Following that, we will look at some ad-hoc
robust statistics. We will then formalize a robust statis-
tic using the M-estimator method. Then we discuss
about robust statistical modeling using student-t dis-
tribution. We finally conclude by showing toy examples
to illustrate various robust estimators.

2 Robustness: Theory

We look at some theory which will aide in understand-
ing the following sections.

2.1 Sensitivity curve and influence
function

Let Tn({xi}ni=1) be a statistic. Then the sensitivity
curve is defined as,

SC(x, T) = lim
n→∞

n[Tn(x1, . . . , xn−1, x)−

Tn−1(x1, . . . , xn−1)] (1)

. The sensitivity curve quantifies the effect of an in-
dividual point on the estimate. The population ver-
sion of the sensitivity curve is the influence function,
which is defined as follows. Let F be a distribution and
Fε = (1− ε)F + εδx be the contaminated distribution.
Then,

IF (x, T, F) = lim
ε→0

T (Fε)− T (F)

ε
=

∂

∂ε
T (Fε)

∣∣∣∣∣
ε=0

(2)

, where T is a statistic on F . For example, the influence
function for sample mean is IF (x,mean, F) = x − µ̄.
Hence, if x→∞, then µ→∞. Robust statistic needs
that we have a bounded influence function.

2.2 Breakdown point

Let us define the bias of an estimator Tn as,

bias(m,Tn, X) = sup
x′
‖Tn(X ′)− Tn(X)‖ (3)

, where X ′ is X with m points replaced by corrupted
points.Then, the breakdown point,

ε∗n(Tn, X) = min{m
n

: bias(m,Tn, X) =∞} (4)

. For example, for sample mean, ε∗n = 1
n , since one

rogue sample is enough to take the estimate to ∞.
The theory discussed in section 2, we would want a

statistic with bounded influence function, which would
ensure that outliers won’t affect the statistic by a large
margin, and also a high break down point, meaning
that we need a large number of corrupted points to
give a bad estimate.

1

3 Some robust estimators

3.1 Heuristic methods

If we assume that data is indeed from a normal process,
and that outliers are due to some experimental error,
then we can drop the tail end of the data and recalcu-
late the mean. If we drop α fraction of the tail, it is
known as α-trimmed mean. Similarly, we can instead
replace the α fraction of the tail end with the next near-
est distribution instead, which gives the α-winsorized
mean.

For both the above mentioned methods, the break
down point, ε∗n = α. However, if there are more than
α fraction of bad points, then the mean can go to ∞,
hence the influence function is not bounded.

3.2 M-estimators

Given data {xi}ni=1 and statistic Tn. Assume that we
wish to minimize the following function:

min
Tn

n∑
i=1

ρ(xi;Tn) (5)

This is called an M-estimator, from Maximum likeli-
hood type estimator. Differentiating w.r.t Tn,

n∑
i=1

ψ(xi;Tn) = 0 (6)

Eg, if ρ(xi;Tn) = 1
2 (xi − Tn)2, ψ(xi;Tn) = (xi −

Tn), which gives sample mean. If ρ(xi;Tn) = |xi −
Tn|, ψ(xi;Tn) = sign(xi − Tn), then the statistic gives
median.

For a reliable estimate, we want a function that heav-
ily penalizes points which are close to the actual statis-
tic, but relaxes on the points that are very far away.
One such popular function is the Huber loss function,
given by,

hk(x) =

{
1
2x

2 |x| < k
k(|x| − 1

2k) |x| > k
(7)

. For points near to center, the ψ function is propor-
tional to the difference, but for far away points, it’s
constant, which removes the effect of outliers. For ap-
propriately chosen k, an M-estimator can have a very
high breakdown point of ε∗n = 0.5

3.3 Robust statistics from distribution

Though the M-estimator is a popular robust estima-
tor, it is parametrized, and not an outcome of a PDF.
Presence of outliers means that there is high probabil-
ity for values at the tail end, which requires a heavy
tail distribution. The first distribution that comes to

the mind is a cauchy distribution. However, if there
are hardly any outliers, then cauchy distribution fails.

A Student-t distribution[2], on the other hand gives
control over the heavy tailed-ness of the distribu-
tion(Figure 1). The student-t distribution with ν de-
grees of freedom is given by

fX(x) =
(1 + u

ν)−
ν+1
2

√
νB(1

2 ,
ν
2)

(8)

Given the data {xi}ni=1, with true center c and true
variance s, we can write the log-likelihood function as

L(c, s) = −ν + 1

2

n∑
i=1

log(1 +
u2i
ν

)− n log(s
√
νB(

1

2
,
ν

2
))

(9)

, where, ui = xi−c
s . We can now maximize L(c, s) to

obtain an MLE estimate of c and s. While the func-
tion is non-convex, an alternating maximization step is
known to give a good estimate. The number of degrees
of freedom, ν, is chosen to give maximum likelihood.

Observe, that differentiating eq. 9 w.r.t c, we get,

∂L

∂c
= 0 =⇒ ν + 1

s

n∑
i=1

ui
ν + u2i

= 0 (10)

≡
n∑
i=1

ψ(xi; θ) = 0

The student-t distribution is free of parameters, is
similar to an M-estimator, and is a more intuitive way
of approaching a robust estimator. Figures 2, 3, 4, 5
give an idea of the robustness of various estimators.

4 Conclusion

We looked at an introduction to the robust statistics
and gave a motivation from the sample mean. The
theory section helped quantifying robustness. We also
looked at some types of robust estimators and showed
some simulation results.

5 References

References

[1] Robust statistics: a brief introduction and overview.

[2] D R Divgi, Robust estimation using student’s t dis-
tribution, (1990).

[3] Peter J Huber, Robust statistics, Springer, 2011.

[4] Elvezio Ronchetti, Introduction to robust statistics.

[5] David E Tyler, A short course on robust statistics.

2

6 Appendix A: Figures

Figure 1: Image courtesy: Wikipedia.

Figure 2: Location estimation with 20 outliers out of
1000

Figure 3: Location estimation with 50 outliers out of
1000

Figure 4: Location estimation with 100 outliers out of
1000

Figure 5: Location estimation with 200 outliers out of
1000

Figure 6: Location estimation with 250 outliers out of
1000

3

7 Appendix B: Code for simulation

1 #!/usr/bin/env python

2

3 from numpy import *

4 import scipy.stats as st

5 import statsmodels.api as sm

6 import scipy.special as sp

7 from matplotlib.pyplot import *

8

9 # Global constants

10 n = 1000;

11 #m_array = range(0, n, 10);

12 m_array = [20, 50, 100, 150, 200, 250];

13

14 ’’’

15 We want to execute the following estimation algorithms:

16 1. Linear least squares.

17 2. Median.

18 3. \alpha-trimmed mean.

19 4. M-estimator with Huber loss function.

20 5. Student-t distribution.

21 ’’’

22

23 class student_t(object):

24 ’’’

25 Minimizer class for robust location and scale estimation using

26 student-t distribution

27 ’’’

28 def __init__(self, data):

29 self.data = data

30 niters = 10000

31

32 # Initialization constants

33 v_array = arange(1, 10)

34

35 c_array = zeros(len(v_array))

36 s_array = zeros(len(v_array))

37 ll_array = zeros(len(v_array))

38

39 for idx in range(len(v_array)):

40 c = median(data)

41 s = 1.0

42 v = v_array[idx]

43

44 t = 0.01

45

46 # Start gradient ascent

47 f_new = self.fval(v, c, s)

48 f_old = -float(’inf’)

49 iters = 0

50 while abs(f_new - f_old) > 1e-6 and iters < niters:

51 del_c, del_s = self.grad(v, c, s)

52 c = c + t*del_c

4

53 s = s + t*del_s

54

55 f_old = f_new

56 f_new = self.fval(v, c, s)

57 iters += 1

58

59 c_array[idx] = c

60 s_array[idx] = s

61 ll_array[idx] = self.fval(v, c, s)

62

63 # Find the one with greatest log-likelihood

64 ll_max = ll_array.max()

65 c = c_array[where(ll_array == ll_max)]

66 s = s_array[where(ll_array == ll_max)]

67

68 # Debugging

69 self.c_array = c_array

70 self.s_array = s_array

71 self.ll_array = ll_array

72

73 self.c = c

74 self.s = s

75 self.v = v

76

77 def fval(self, v, c, s):

78 ’’’Function handle for the log likelihood function’’’

79 u = (self.data - c)/s

80 ll = -0.5*(v+1)*sum(log(1+ pow(u, 2)/v)) -(

81 n*log(s*sqrt(v)*sp.beta(0.5, float(v)/2)))

82 return ll

83

84 def grad(self, v, c, s):

85 ’’’Gradient handle for the log likelihood function’’’

86 u = (self.data - c)/s

87 n = len(self.data)

88 grad_c = ((v+1)/s)*sum(u/(v + pow(u, 2)))

89 grad_s = -n/s + ((v+1)/s)*sum(2*pow(u,2)/(v + pow(u,2)))

90

91 return grad_c, grad_s

92

93 def ll_t(data, c, s, v):

94 ’’’Function to return log-likelihood of the data with student’s

95 t distribution.

96 ’’’

97 u = (x - c)/v

98 ll = -0.5*(v+1)*sum(log(1+ pow(u, 2)/v)) -n*log(s*sqrt(v)*sp.beta(0.5, v/2))

99 return ll

100

101 # Generated data constants.

102 mu0 = 5

103 noise_sigma = 1.0

104 outlier_sigma = 3.0

105 outlier_mean = 15

106

107 # Place holders.

5

108 estim_m = zeros((1, len(m_array)))

109 estim_s = zeros((1, len(m_array)))

110

111 # Now start the estimation.

112 for idx in range(len(m_array)):

113 m = m_array[idx];

114 noise = random.randn(n-m)*noise_sigma;

115 outliers = random.randn(m)*outlier_sigma + outlier_mean;

116 data = np.hstack((noise, outliers)) + mu0;

117

118 # Use this for spreading data.

119 rand_data = np.random.rand(n)

120 rand_data_center = mean(rand_data)

121

122 # OLS estimation.

123 ols_mu = mean(data);

124 # Median estimate

125 #median_mu = sm.robust.scale.mad(data);

126 median_mu = median(data);

127 # \alpha-trimmed mean

128 atrim_mu = st.trim_mean(data, 0.2);

129 # M-estimator with huber loss.

130 huber_mu, huber_scale = sm.robust.scale.Huber(maxiter=1000)(data);

131 # Student-t distribution.

132 st_obj = student_t(data);

133

134 # Print the estimates.

135 print ’OLS: ’, ols_mu

136 print ’Median: ’, median_mu

137 print ’Trimmed mean: ’, atrim_mu

138 print ’Huber mean: ’, huber_mu

139 print ’Student-t mean: ’, st_obj.c

140

141 # Plot the estimate.

142 figure()

143 plot(rand_data, data, ’yx’)

144 plot(rand_data_center, ols_mu, ’rx’,

145 label=’Sample mean = %.2f’%ols_mu, markersize=12, mew=2.0)

146 plot(rand_data_center, median_mu, ’gx’,

147 label=’Median = %.2f’%median_mu, markersize=12, mew=2.0)

148 plot(rand_data_center, atrim_mu, ’bx’,

149 label=’Trimmed mean = %.2f’%atrim_mu, markersize=12, mew=2.0)

150 plot(rand_data_center, huber_mu, ’m+’,

151 label=’Huber mean = %.2f’%huber_mu, markersize=12, mew=2.0)

152 plot(rand_data_center, st_obj.c, ’k+’,

153 label = ’Student-t mean = %.2f’%st_obj.c, markersize=12, mew=2.0)

154 title(’Location estimation with m = %d’%m)

155 legend()

156 savefig(’plot_m_%d.png’%m)

6

