Carnegie Mellon University Robust Statistics

Vishwanath Saragadam Raja Venkata (vishwanath.srv@cmu.edu)

April 29, 2015

Saragadam

Introduction and overview Introduction Why robust statistics

Math primer

Sensitivity curve Influence function Breakdown point

Some robust estimation ideas Ad-hoc ideas The M-estimator

Robust estimation as the outcome of a distribution

Visualizing some statistics

Conclusion

"A discordant small minority should never be able to override the evidence of the majority of the observations."

- Huber (2011)

Saragadam

- Introduction and overview Introduction Why robust statistics
- Math primer
- Sensitivity curve Influence function Breakdown point
- Some robust estimation ideas Ad-hoc ideas
- The M-estimator
- Robust estimation as the outcome of a distribution
- Visualizing some statistics

Conclusion

Introduction

- Modeling of data most likely will deviate from the actual model.
- Experimental errors might crop up into data.
- ► Inference might be grossly wrong in that case.
- Can we come up with good statistics to capture these uncertainties in model?
- ► Is there a way to reduce the effect of outliers.

Saragadam

Introduction and overview Introduction Why robust statistics

Math primer

Sensitivity curve Influence function Breakdown point

Some robust estimation ideas Ad-hoc ideas The

M-estimator

Robust estimation as the outcome of a distribution

Visualizing some statistics

Conclusion

Why robust statistics

- Find an inference method that describes majority of the data.
- ► Identify outliers, i.e, data which does not fit the model.
- ► Talk about the influence of individual data points.
- ► Talk about how wrong the data has to be, to give a bad estimate. *Ronchetti, hem, Tyler*

Saragadam

Introduction and overview Introduction Why robust statistics

Math primer

- Sensitivity curve Influence function Breakdown point
- Some robust estimation ideas Ad-hoc ideas
- The M-estimator
- Robust estimation as the outcome of a distribution

Visualizing some statistics

Conclusion

What to expect from a robust statistic

- Efficiency: Reasonably good efficiency at the assumed mode.
- Stability: A small deviation from the assumed model shouldn't return garbage statistics.
- Breakdown: Large deviations shouldn't create a catastrophe.

Saragadam

Introduction and overview Introduction Why robust statistics

Math primer

Sensitivity curve Influence function Breakdown point

Some robust estimation ideas Ad-hoc ideas The M-estimator

Robust estimation as the outcome of a distribution

Visualizing some statistics

Conclusion

Quantifying robustness – Sensitivity curve

Let T_n({x_i}ⁿ_{i=1}) be a statistic. Then the sensitivity curve of x,

$$SC(x, T) = \lim_{n \to \infty} n[T_n(x_1, \dots, x_{n-1}, x) - T_{n-1}(x_1, \dots, x_{n-1})]$$
(1)

• Quantifies the effect of an individual data point.

Saragadam

Introduction and overview Introduction Why robust statistics

Math primer

Sensitivity curve

Influence function

Breakdown point

Some robust estimation ideas Ad-hoc ideas The M-estimator

Robust estimation as the outcome of a distribution

1

Visualizing some statistics

Conclusion

$\label{eq:Quantifying robustness-Influence function} Quantifying \ robustness-Influence \ function$

Let F be a distribution and F_ε = (1 − ε)F + εδ_x be the contaminated distribution.

• Let T(F) be a statistic. Then,

$$IF(x, T, F) = \lim_{\epsilon \to 0} \frac{T(F_{\epsilon}) - T(F)}{\epsilon} = \frac{\partial}{\partial \epsilon} T(F_{\epsilon}) \bigg|_{\epsilon=0}$$
(2)

• For mean,
$$IF(x, T, F) = x - \overline{\mu}$$

Saragadam

Introduction and overview Introduction Why robust statistics

Math primer

Sensitivity curve Influence function

Breakdown point

Some robust estimation ideas Ad-hoc ideas The M-estimator

Robust estimation as the outcome of a distribution

Visualizing some statistics

Conclusion

Quantifying robustness – Breakdown point

Define bias function:

$$bias(m, T_n, X) = \sup_{x'} \|T_n(X') - T_n(X)\|$$
 (3)

Where X' is X with m points replaced by corrupted points.▶ Breakdown point,

$$\epsilon_n^*(T_n, X) = \min\{\frac{m}{n} : bias(m, T_n, X) = \infty\}$$
(4)

 \blacktriangleright For mean, breakdown point is 0, because one rogue sample is sufficient to take bias to ∞

Some Ad-hoc ideas

Saragadam

Introduction and overview Introduction Why robust statistics

Math primer

- Sensitivity curve Influence function Breakdown point
- Some robust estimation ideas
- Ad-hoc ideas The M-estimator
- Robust estimation as the outcome of a distribution

Visualizing some statistics

Conclusion

- Agree that data comes from a normal distribution. This means, probability of outliers is very low. Solution? Drop such data points! Called α-trimmed mean.
- Another approach is to replace α proportion of tail data with it's closest observation. Called α-windsorized mean.
- Break down point of both methods is $\epsilon^* = \alpha$

Saragadam

Introduction and overview Introduction Why robust statistics

Math primer

Sensitivity curve Influence function Breakdown point

Some robust estimation ideas

Ad-hoc ideas The M-estimator

Robust estimation as the outcome of a distribution

Visualizing some statistics

Conclusion

The M-estimator

• Given data $\{x_i\}_{i=1}^n$ and statistic T_n .

► Assume that we wish to minimize the following function:

$$\min_{T_n} \sum_{i=1}^n \rho(x_i; T_n)$$
(5)

- Called an M-estimator, from Maximum likelihood type estimator.
- If we wish to find location, then $\rho(x_i; T_n) = \rho(x_i T_n)$

Carnegie Mellon University

Saragadam

Introduction and overview Introduction Why robust statistics

Math primer

Sensitivity curve Influence function Breakdown point

Some robust estimation ideas Ad-hoc ideas The

M-estimator Robust estimation as the outcome

of a distribution

Visualizing some statistics

Conclusion

The M-estimator

► Differentiating eq. 5,

$$\sum_{i=1}^{n} \psi(x_i; T_n) = 0 \tag{6}$$

• Eg, if
$$\rho(x_i; T_n) = \frac{1}{2}(x_i - T_n)^2$$
, $\psi(x_i; T_n) = (x_i - T_n)$.
Simple least squares solution. Give sample mean.

► $\rho(x_i; T_n) = |x_i - T_n|, \psi(x_i; T_n) = sign(x_i - T_n)$. Gives median.

Carnegie Mellon University

Saragadam

Introduction and overview Introduction Why robust statistics

Math primer

Sensitivity curve Influence function Breakdown point

Some robust estimation ideas Ad-hoc ideas The

M-estimator

Robust estimation as the outcome of a distribution

Visualizing some statistics

Conclusion

The M-estimator

 Intuitively, we want to penalize a large number of points with small error, but relax on a few points with large error.
 Huber loss function does this job.

$$h_k(x) = \begin{cases} \frac{1}{2}x^2 & |x| < k\\ k(|x| - \frac{1}{2}k) & |x| > k \end{cases}$$
(7)

 Breakdown point is 0.5, meaning that, more than 50% of the data has to be corrupt to give a bad estimate.

Saragadam

Introduction and overview Introduction Why robust statistics

Math primer

Sensitivity curve Influence function Breakdown point

Some robust estimation ideas Ad-hoc ideas The

M-estimator Robust estimation as

of a distribution

Visualizing some statistics

Conclusion

Robust statistic as an outcome of a PDF

- All methods described previously are based on some kind of intuition to deal with error.
- ► Can a robust estimate be an outcome of a density function.
- Heavy tail distributions have higher probability for tail end samples.
- Immediate distribution in mind: Cauchy distribution. Not reliable if sampling is truly normal.
- ► Can we get a control over the heaviness of the tail? Yes, student-t distribution Divgi (1990).

Saragadam

Introduction and overview Introduction Why robust statistics

Math primer

Sensitivity curve Influence function Breakdown point

Some robust estimation ideas Ad-hoc ideas The M-estimator

Robust estimation as the outcome of a distribution

Visualizing some statistics

Conclusion

Using Student-t distribution for robust estimation

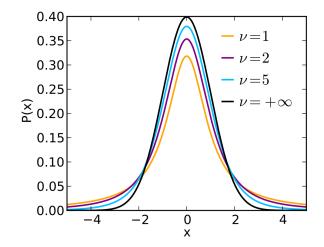


Figure : Image courtesy: Wikipedia.

Carnegie Mellon University

Saragadam

Introduction and overview Introduction Why robust statistics

Math primer

Sensitivity curve Influence function Breakdown point

Some robust estimation ideas Ad-hoc ideas The M-estimator

Robust estimation as the outcome of a distribution

Visualizing some statistics

Conclusion

Using Student-t distribution for robust estimation

- Let x come from a student-t distribution with center c, scale s and ν degrees of freedom.
- Let $u = \frac{x-c}{s}$. Then, the density of x,

$$f_X(x) = \frac{(1 + \frac{u}{\nu})^{-\frac{\nu+1}{2}}}{s\sqrt{\nu}B(\frac{1}{2}, \frac{\nu}{2})}$$
(8)

Log likelihood function for
$$\{x_i\}_{i=1}^n$$
,

$$L(c,s) = -\frac{\nu+1}{2} \sum_{i=1}^{n} \log(1 + \frac{u_i^2}{\nu}) - n\log(s\sqrt{\nu}B(\frac{1}{2},\frac{\nu}{2}))$$
(9)

Saragadam

Introduction and overview Introduction Why robust statistics

Math primer

Sensitivity curve Influence function Breakdown point

Some robust estimation ideas Ad-hoc ideas

The M-estimator

Robust estimation as the outcome of a distribution

Visualizing some statistics

Conclusion

Using Student-t distribution for robust estimation

▶ Differentiating with respect to *c*,

$$\frac{\partial L}{\partial c} = 0 \implies \frac{\nu + 1}{s} \sum_{i=1}^{n} \frac{u_i}{\nu + u_i^2} = 0$$
(10)
$$\equiv \sum_{i=1}^{n} \psi(x_i; \theta) = 0$$

Differentiating with respect to s,

$$\frac{\partial L}{\partial s} = 0 \implies -\frac{n}{s} + \frac{\nu + 1}{s} \sum_{i=1}^{n} \frac{2u_i^2}{\nu + u_i^2} = 0 \qquad (11)$$

Saragadam

Introduction and overview Introduction Why robust statistics

Math primer

Sensitivity curve Influence function Breakdown point

Some robust estimation ideas Ad-hoc ideas

The M-estimator

Robust estimation as the outcome of a distribution

Visualizing some statistics

Conclusion

Using Student-t distribution for robust estimation

- c, s can be estimated with gradient descent or alternating maximization algorithm.
- Tune ν for maximum log likelihood.
- ► Simple method, similar to M-estimator, and intuitive.
- ► Free of parameters.

Saragadam

Introduction and overview Introduction Why robust statistics

Math primer

Sensitivity curve Influence function Breakdown point

Some robust estimation ideas Ad-hoc ideas

The M-estimator

Robust estimation as the outcome of a distribution

Visualizing some statistics

Conclusion

Estimating mean using various methods

- ► Consider the data {x_i}ⁿ_{i=1}, of which, m data points are corrupted.
- ► Add noise to n m data points, and perturb the m data points drastically.
- ► Try estimating mean of this data set using various methods.
- Vary *m* to see where each algorithm stops returning accurate mean.

Saragadam

Introduction and overview Introduction Why robust statistics

Math primer

Sensitivity curve Influence function Breakdown point

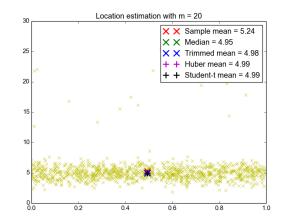
Some robust estimation ideas Ad-hoc ideas

The M-estimator

Robust estimation as the outcome of a distribution

Visualizing some statistics

Conclusion



Estimating mean using various methods

Figure : Location estimation with 20 outliers out of 1000

Carnegie Mellon University

Saragadam

Introduction and overview Introduction Why robust statistics

Math primer

Sensitivity curve Influence function Breakdown point

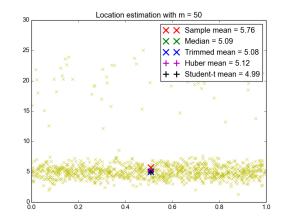
Some robust estimation ideas Ad-hoc ideas The

I he M-estimator

Robust estimation as the outcome of a distribution

Visualizing some statistics

Conclusion



Estimating mean using various methods

Figure : Location estimation with 50 outliers out of 1000

Carnegie Mellon University

Saragadam

Introduction and overview Introduction Why robust statistics

Math primer

Sensitivity curve Influence function Breakdown point

Some robust estimation ideas Ad-hoc ideas

The M-estimator

Robust estimation as the outcome of a distribution

Visualizing some statistics

Conclusion

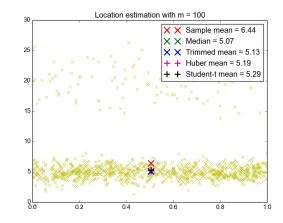


Figure : Location estimation with 100 outliers out of 1000

Carnegie Mellon University

21/25

Estimating mean using various methods

Saragadam

Introduction and overview Introduction Why robust statistics

Math primer

Sensitivity curve Influence function Breakdown point

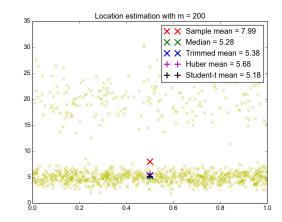
Some robust estimation ideas Ad-hoc ideas The

M-estimator

Robust estimation as the outcome of a distribution

Visualizing some statistics

Conclusion



Estimating mean using various methods

Figure : Location estimation with 200 outliers out of 1000

Carnegie Mellon University

Saragadam

Introduction and overview Introduction Why robust statistics

Math primer

Sensitivity curve Influence function Breakdown point

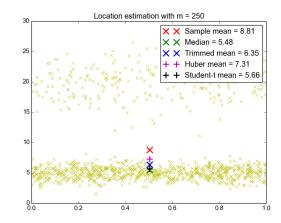
Some robust estimation ideas Ad-hoc ideas The

M-estimator Robust

estimation as the outcome of a distribution

Visualizing some statistics

Conclusion



Estimating mean using various methods

Figure : Location estimation with 250 outliers out of 1000

Carnegie Mellon University

Saragadam

Introduction and overview Introduction Why robust statistics

Math primer

- Sensitivity curve Influence function Breakdown point
- Some robust estimation ideas
- Ad-hoc ideas The M-estimator

Robust estimation as the outcome of a distribution

Visualizing some statistics

Conclusion

Concluding remarks

- ► Got a broad overview of robust statistics and it's necessity.
- Saw a couple of intuitive and well structured robust estimation techniques.
- No single best method for all problems. Need to go through some of the methods to figure out which one works.
- Many other robust estimation techniques like RANSAC, MINPRAN etc.

Saragadam

Introduction and overview Introduction Why robust statistics

Math primer

Sensitivity curve Influence function Breakdown point

Some robust estimation ideas Ad-hoc ideas The M-estimator

Robust estimation as the outcome of a distribution

Visualizing some statistics

Conclusion

References

Robust statistics: a brief introduction and overview.

D R Divgi. Robust estimation using student's t distribution. 1990.

Peter J Huber. Robust statistics. Springer, 2011.

Elvezio Ronchetti. Introduction to robust statistics.

David E Tyler. A short course on robust statistics.