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“A discordant small minority should never be able to
override the evidence of the majority of the observations.”

— Huber (2011)
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Introduction

» Modeling of data most likely will deviate from the actual
model.

» Experimental errors might crop up into data.
» Inference might be grossly wrong in that case.

» Can we come up with good statistics to capture these
uncertainties in model?

» Is there a way to reduce the effect of outliers.
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Why robust statistics

v

v

v

\4

Find an inference method that describes majority of the
data.

Identify outliers, i.e, data which does not fit the model.
Talk about the influence of individual data points.

Talk about how wrong the data has to be, to give a bad
estimate. Ronchetti,hem, Tyler
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What to expect from a robust statistic

» Efficiency:
mode.

Reasonably good efficiency at the assumed

» Stability: A small deviation from the assumed model
shouldn't return garbage statistics.

» Breakdown
catastrophe.

: Large deviations shouldn’t create a
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Quantifying robustness — Sensitivity curve

>

v

Let To({xi}"_,) be a statistic. Then the sensitivity curve of
X,

SC(x, T) = Ii_)m n[Ta(x1, s Xn—1,%) — Th—1(x1, ..., Xn—1)]
(1)

Quantifies the effect of an individual data point.
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Quantifying robustness — Influence function

» Let F be a distribution and F. = (1 — €)F + edy be the
contaminated distribution.

Let T(F) be a statistic. Then,

v

IF(x, T,F) = IimM 0

e—0 € - Oe

» For mean, IF(x, T,F)=x—[1

Carnegie Mellon Universi
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Quantifying robustness — Breakdown point

» Define bias function:

bias(m, Ty, X) = sup | To(X') = To(X)| (3)

Where X’ is X with m points replaced by corrupted points.
» Breakdown point,

(T X) = min{%  bias(m, Tp, X) = 00} (4)

» For mean, breakdown point is 0, because one rogue sample
is sufficient to take bias to oo

Carnegie Mellon Universi
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Some Ad-hoc ideas

» Agree that data comes from a normal distribution. This
means, probability of outliers is very low. Solution? Drop
such data points! Called a-trimmed mean.

» Another approach is to replace o proportion of tail data
with it's closest observation. Called a-windsorized mean.

» Break down point of both methods is €* = «
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The

v

v

v

v

M-estimator

Given data {x;}7_; and statistic T),.

Assume that we wish to minimize the following function:
n
i Y o0 T ©)
Called an M-estimator, from Maximum likelihood type

estimator.

If we wish to find location, then p(x;; T,) = p(xi — Tp)
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The M-estimator

» Differentiating eq. 5,
> w(xi; Ta) =0 (6)
i=1

» Eg, if p(x;; Th) = %(Xi - Tn)271/1(xi; Tn) = (xi — Th).
Simple least squares solution. Give sample mean.

> p(xi; Tn) = |xi — Thl,¥(xi; Tn) = sign(x; — T,). Gives
median.
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The M-estimator

» Intuitively, we want to penalize a large number of points
with small error, but relax on a few points with large error.

» Huber loss function does this job.

[ Ix2 x| < k
i) = { k(x| - 1K) x> & @)

» Breakdown point is 0.5, meaning that, more than 50% of
the data has to be corrupt to give a bad estimate.
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Robust statistic as an outcome of a PDF

» All methods described previously are based on some kind of
intuition to deal with error.

» Can a robust estimate be an outcome of a density function.

» Heavy tail distributions have higher probability for tail end
samples.

» Immediate distribution in mind: Cauchy distribution. Not
reliable if sampling is truly normal.

» Can we get a control over the heaviness of the tail? Yes,
student-t distribution Divgi (1990).
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Using Student-t distribution for robust estimation

» Let x come from a student-t distribution with center c,
scale s and v degrees of freedom.

» Let u= *_%. Then, the density of x,

R
M= By )

» Log likelihood function for {x;}7_;,

v+ 1< u,-2 1 v
L(c.s) = === > _log(1+-1) — nlog(sv/vB(5, ;)
i=1

(9)
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Using Student-t distribution for robust estimation

» Differentiating with respect to c,

oL 1 i
0 — LIS U g (10)

dc s Zv+t u?
n
= Z P(x;;0) =0
i=1
» Differentiating with respect to s,
oL nov+1lg~ 2u?
Os s T s ; v+ u? (11)

Carnegie Mellon Universi
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Using Student-t distribution for robust estimation

v

v

v

v

¢, s can be estimated with gradient descent or alternating
maximization algorithm.

Tune v for maximum log likelihood.
Simple method, similar to M-estimator, and intuitive.

Free of parameters.
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Estimating mean using various methods

» Consider the data {x;}"_, of which, m data points are
corrupted.

» Add noise to n — m data points, and perturb the m data
points drastically.

» Try estimating mean of this data set using various methods.

» Vary m to see where each algorithm stops returning
accurate mean.
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Estimating mean using various methods

Figure

Location estimation with m =20

30 T T
X X Sample mean =5.24
X X Median =4.95
By X X Trimmed mean = 4.98 ||
+ + Huber mean =4.99
% + + Student-t mean = 4.99
15} 1
10} 1
5¢ ¥ 4
0 . . . .
00 02 04 06 08

. Location estimation with 20 outliers out

of 1000
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Estimating mean using various methods

Figure

Location estimation with m = 50

X X Sample mean =5.76
X X Median =5.09

By X X Trimmed mean = 5.08
+ + Huber mean =5.12
+ + Student-t mean = 4.99

20

. Location estimation with 50 outliers out

of 1000
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Estimating

mean using various methods

Location estimation with m = 100

30 . ‘
X X Sample mean = 6.44
X X Median =5.07

Bl X X Trimmed mean = 5.13 ||
+ + Huber mean =5.19

20 + + Student-t mean = 5.29

151 |

10} |

X

5t * |

[ . . . .

00 02 04 06 08 10

Figure :

Location estimation with 100 outliers out of 1000
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Estimating

mean using various methods

Location estimation with m = 200

35 T T
X X Sample mean =7.99
wl X X Median = 5.28 |
X X Trimmed mean = 5.38
+ + Huber mean = 5.68
B + + Student-t mean=5.18 ||
201 J
151 4
10} 1
X
5| * ;)
0 . . . .
00 02 04 06 08 10

Figure :

Location estimation with 200 outliers out of 1000
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Estimating

mean using various methods

Location estimation with m = 250

30 T T
X X Sample mean = 8.81
X X Median =548
By X X Trimmed mean = 6.35 ||
+ + Huber mean =7.31
% + + Student-t mean = 5.66
15} 1
10} 1
X
+
sf + ]
0 . . . .
00 02 04 06 08 10

Figure :

Location estimation with 250 outliers out of 1000




Robust
Statistics

Saragadam

Introduction
and overview
Introduction

Why robust
statistics

Math primer
Sensitivity
curve

Influence
function

Br_eakdown

point
Some robust
estimation
ideas

Ad-hoc ideas

The
M-estimator

Robust
estimation as
the outcome
of a
distribution

Visualizing
some
statistics

Conclusion

Concluding remarks

» Got a broad overview of robust statistics and it's necessity.

» Saw a couple of intuitive and well structured robust
estimation techniques.

» No single best method for all problems. Need to go through
some of the methods to figure out which one works.

» Many other robust estimation techniques like RANSAC,
MINPRAN etc.
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