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Abstract

We propose a novel compressive sensing imager for de-
tecting anomalous spectral profiles in a scene. The sens-
ing strategy models the background spectrum to lie on a
low-dimensional subspace while assuming the anomalies to
form a spatially-sparse set of spectral profiles different from
the background. Our core contributions are in the form of a
two stage sensing mechanism: in the first stage, we estimate
the subspace for the spectrum of background by acquir-
ing spectral measurements at a few randomly-selected pix-
els. In the second stage, we acquire spatially-multiplexed
spectral measurements of the scene. Projecting the spec-
tral measurements on the complementary subspace creates
a sparse matrix which is then recovered using a Multi-
ple Measurement Vector problem. Theoretical analysis and
simulations show significant speed up in acquisition time
over other anomaly detection techniques. A lab prototype
based on a DMD and a visible spectrometer validates our
proposed imager.

1. Introduction
Hyperspectral images measure light intensity in a scene

as a function of space and spectrum. The availability of
spectral measurements at each spatial location helps in iden-
tifying material composition. This has found applications in
facial recognition [18, 14], segmentation [23] , and numer-
ous geoscience and remote sensing applications [9].

An important application of hyperspectral imaging is to
identify the presence of anomalous materials in a scene.
When the materials of interest are present in trace quan-
tities, it is common to model them as anomalous spectral
signatures [16]. The most common approach for hyperspec-
tral anomaly detection is to represent the background using
a low-dimensional subspace. Subsequently, a spatial loca-
tion or a “pixel” which cannot be represented accurately by
the background model is tagged as an anomaly. Estimation
of the location of these anomalies typically requires acqui-
sition of the complete hyperspectral image. Since typical
hyperspectral images are extremely high-dimensional, the

Figure 1: Anomaly detection is often used for geologi-
cal surveillance. (left) False-color visualization of a 256 ×
256 × 360 hyperspectral image of the Deepwater horizon
spill [22] with oil spills denoted in gray and background
in dark blue. (right) Pixels with anomalous spectra are de-
tected using the proposed sensing framework and marked in
red. The results were obtained using 3500 × 360 measure-
ments which is 1/18 the dimensionality of the image.

imaging effort is not only time consuming and also requires
highly sensitive and expensive sensor elements.

In this paper, we propose a novel sensing framework that
directly estimates the location of anomalous spectral sig-
natures without sensing the entire hyperspectral image as-
sociated with a scene. We model the hyperspectral image
as a sum of the background, assumed to be low-rank, and
the anomalies, assumed to be sparse. Under these model-
ing assumptions, we estimate the locations of the anoma-
lies using a computational camera that implements the fol-
lowing two-stage approach. In the first stage, we build
a low-dimensional subspace for the background spectrum
by acquiring a spectral measurements at a few randomly-
selected spatial locations in the scene. In the second stage,
we obtain spatially-multiplexed spectral measurements of
the scene and estimate the sparse anomalies by projecting
out the subspace corresponding to the background spec-
trum. Figure 1 shows estimation of 200 anomalous pix-
els of oil spill in 256 × 256 × 360 Deepwater oil spill hy-
perspectral image [22] with 3500 spectral measurements.
Our algorithm recovers anomalies with very high accuracy
with fewer measurements than the dimension of the signal.
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Our sensing framework enables a significant reduction in
the number of measurements over competing schemes that
require the entire hyperspectral image, thereby providing
significant speedups and efficiencies at acquisition time.

We make the following contributions in this paper.

• Novel sensing framework. We propose a sensing frame-
work that detects anomalies directly with fewer measure-
ments than the dimension of the hyperspectral image.

• Theoretical guarantees. We provide expressions for the
minimum number of measurements and recovery accu-
racy for our proposed sensing method.

• Validation with a lab prototype. We demonstrate the
efficacy of our approach using a lab prototype that uses a
digital micromirror device (DMD) for spatial modulation
and a spectrometer for spectral measurements.

We also evaluate our technique, on synthetic data, against
the classical Reed Xiaoli (RX) [21] detector as well as more
recent techniques that rely on compressive imaging under
the low rank and sparse signal model.

2. Prior work
Notation. We denote vectors in bold font, scalars in small
letters and matrices in capital letters. The `0-norm of a
vector is the number of non-zero entries. Given a matrix
X ∈ RM×N and an index set Ω ⊂ {1, 2, . . . , N}, XΩ

represents a matrix of size RM×|Ω| formed by selecting
columns of X corresponding to the elements of Ω. The
p,q-norm of a matrix is defined as

‖X‖p,q =

(
N∑

n=1

‖xi‖qp

)1/q

.

Note that this is an entry-wise norm and is not to be con-
fused with the induced matrix norms. Hence, ‖X‖2,2 is the
Frobenius norm of a matrix, ‖X‖2,1 is the sum of `2-norms
of columns, ‖X‖p,0 is the number of non-zero columns of
X and ‖X>‖p,0 is the number of non-zero rows ofX . Con-
sider a signal x ∈ RJN , which can be reshaped into a J×N
matrix,X . The vector x is called K-block sparse if the num-
ber of non-zero columns in X is no more than K.

Compressive sensing (CS). CS aims at recovering a sig-
nal from a set of linear measurements fewer than its dimen-
sionality [3], i.e., we seek to acquire a signal x ∈ RN from
M � N measurements, y = Φx + e, where Φ ∈ RM×N

is the sensing matrix, and e is the measurement noise. CS
relies on the sensed signal being sparse either canonically
or under a linear transformation. In such a scenario, we can
recover the signal by solving

min
x
‖y − Φx‖2, ‖x‖0 ≤ K.

There are many approaches to solving this optimization
problem, including convex relaxation techniques like Basis
Pursuit [24] and greedy techniques like Orthogonal Match-
ing Pursuit [19] and CoSaMP [17]. This model is also called
the single measurement vector (SMV) problem.

The multiple measurement vector (MMV) problem ex-
tends the idea of sensing of sparse signals to a scenario
where we sense multiple signals that share a common spar-
sity pattern [10]. The MMV problem can be formulated as

Y = ΦX + E, ‖X>‖2,0 ≤ K,

with Y ∈ RM×Q,X ∈ RN×Q,Φ ∈ RM×N and E ∈
RM×Q. Here, Y = [y1,y2, ...,yQ] are the multiple mea-
surements, X = [x1,x2, ...,xQ] are the signals that share
the same sparsity pattern, and E = [e1, e2, ..., eQ] is the
measurement noise. Solutions to the MMV problem can
be obtained through algorithms similar in spirit to the SMV
problem [10]. The MMV model and the results in Baraniuk
et al. [4] are of particular interest to the results in this paper
since CS of spatially sparse hyperspectral image under spa-
tial multiplexing reduces to an MMV problem, with each
spectral image representing a signal of interest.

Hyperspectral image models. Hyperspectral images can
be seen as a composition of a background composed of
a few spectral profiles and anomalies, with spectral pro-
files different from that of the background. Hence, the
background spectrum can often be represented by a low-
dimensional model and anomalies can be represented as
spatially sparse outliers. A sum of low-rank and sparse
matrix models is therefore very appealing for hyperspec-
tral images and is of particular interest to us, as it is simple
and represents the background spectrum and anomalies ac-
curately. Consider a hyperspectral image with spatial reso-
lution of N1 × N2 pixels and a spectrum resolution of N3

spectral bands. We represent such a hyperspectral image as
a N3 × N1N2 matrix such that each column of this matrix
is the spectral profile at a particular pixel and each row rep-
resenting the image at a particular spectral band. Under this
notation, the low rank and sparse matrix model is given as

X = L+ S, rank(L) ≤ k, ‖S‖2,0 ≤ T (1)

Chakrabarti et al. [7] showed that hyperspectral images
of natural scenes are very well represented by this signal
model. The low rank and sparse model has been used for
various hyperspectral imaging tasks [27, 12, 29]. While
such models have found use in CS of hyperspectral images
with anomaly detection in post-processing, there are few
results in existing literature that directly sense the spectral
anomalies directly from compressive measurements.

Hyperspectral imaging. Hyperspectral images are cap-
tured by various techniques like spatial scanning, spectral



scanning, snapshot imaging and spatio-spectral scanning
[25]. Since we need to measure the spectral profile at each
pixel, the acquisition process is extremely time consuming
and wasteful if we are only interested in detecting anoma-
lies. Hence, CS approaches have been pursued to reduce the
number of acquired measurements [1, 26].

Identifying anomalous spectral signatures in hyperspec-
tral images is done in the post-process stage, which involves
techniques like hyperspectral unmixing [5], support vec-
tor data descriptor [2] and subspace-based methods [20].
The idea underlying these methods is to fit a model to the
background spectrum in the hyperspectral image; any pixel
which does not conform to this model is classified as an
anomalous spectral signature. These techniques require ei-
ther measuring the whole hyperspectral cube, or recovery
of the whole cube from its compressive measurements.

We propose a sensing technique that directly estimates
the location of spatially sparse anomalies from a few com-
pressive measurements. Such a model, which involves sens-
ing of spatially sparse signals by removing contribution for
background has been explore in video surveillance [6]. Our
paper extends this idea to hyperspectral images by knock-
ing off the contribution from background spectra, which re-
sults in a spatially sparse hyperspectral image. Locations of
the anomalous spectral signatures can then be estimated by
solving it as an MMV problem.

3. Proposed methodology
We now detail the imaging architecture for obtaining

measurements for the proposed method and provide details
of algorithm to solve for the anomalous pixel locations.

3.1. Sensing architecture

Our optical setup (see Figure 2) consists of a DMD and
a spectrometer. The scene is focused onto the DMD us-
ing an objective lens. Subsequently, light directly from the
DMD along one of the mirrored optical axis is fed onto a
spectrometer. If we represent the hyperspectral image X
as a matrix of dimensions N3 × N1N2 such that each col-
umn of the matrix is the spectral profile at a pixel, then a
measurement yi ∈ RN3 at the spectrometer is of the form
yi = Xφi + ei, where φi ∈ RN1N2 is the binary pattern
displayed on the DMD and ei is the measurement noise.
It is worth noting that this optical system is the same as a
single pixel camera [11], except that the photodetector (i.e,
the single pixel) has been replaced by a spectrometer. Hy-
perspectral imaging using such an architecture has been ex-
plored in [15].

We can obtain multiple set of spectral measurements by
displaying different patterns on the DMD. The resulting
measurement model can be expressed as Y = XΦ + E,
where Y = [y1,y2, ...yM ] is the collection of spectral

Figure 2: Our built imager consists of a DMD which dis-
plays desired patterns and a spectrometer which obtains
spectrum of the scene’s dot product with DMD pattern.

measurements, Φ ∈ RN1N2×M is the sensing matrix and
E ∈ RN3×M is the measurement noise.

3.2. Anomaly detection algorithm

We model a hyperspectral image X as a sum of a low
rank matrix L and a sparse matrix S. Our aim is to es-
timate the non-zero columns of S with as few measure-
ments as possible, since each column represents the spec-
trum at a particular scene pixel. We achieve this using a
two-stage sensing mechanism. In the first stage, we obtain
a low-rank subspace U corresponding to the column-span
of the matrix L; this subspace provides a model for the
background spectra. In the second stage, we obtain a few
spatially-multiplexed measurements. Complementary pro-
jection onto the previously estimated subspace leaves only
the sparse outliers, which are recovered using sparse ap-
proximation techniques.

Stage 1 – Subspace estimation. The goal is to estimate
a subspace for the background pixels by acquiring n1 spec-
tometer measurements. Let Ω1 represent the indices of n1

randomly-chosen spatial locations. We acquire measure-
ments of the form Y1 = XΩ1 + E1, where E1 ∈ RN3×n1

is the measurement noise. We estimate a basis U ∈ RN3×k

for the k-dimensional subspace, such that

Y1 = LΩ1 + SΩ1 + E1 = UΛΩ1 + SΩ1 + E1, (2)

We estimate the basis U by solving (2) under a Robust PCA
[28] formulation.

Stage 2 – Finding outliers. In the second stage, we obtain
M spatially-multiplexed measurements of the form

Y2 = XΦ + E2 = LΦ + SΦ + E2. (3)



Since we have estimated the basis for the low rank repre-
sentation in the first stage, we can write L = UΛ, Λ ∈
Rk×N1N2 . Thus Y2 = UΛΦ + SΦ + E2. Let P⊥U be the
complementary projection operator for U .

Ỹ = P⊥U Y2 = P⊥U UΛ + P⊥U SΦ + P⊥U E2

= 0 + P⊥U SΦ + P⊥U E2 = S̃Φ + Ẽ2. (4)

Note that S̃, which is the projection of the sparse matrix
onto the complementary subspace of U, retains its sparsity
structure, as the projection operation is only for the spectra,
spanned by the columns. Estimating S̃ given Ỹ and Φ is
then an MMV problem [10].

4. Recovery guarantees
We provide guarantees on recovery in terms of minimum

number of measurements and estimation error.

4.1. Minimum number of measurements

We now provide an estimate of the minimum number of
measurements required to estimate the anomalies with our
sensing strategy. We rely heavily on results from model-
based compressive sensing [4] and Chen et al. [8].

Proposed method. To estimate the column span of the
low-rank component, we need measurements proportional
to its rank and hence, we need O(kN3) samples for stage-
one. Stage-two requires compressive measurements of a
block sparse signal. Baraniuk et al. [4] have shown that for
a block sparse signal of size J×N , withK non-zero blocks,
measurements as few as O(JK + K log(N/K)) are suffi-
cient for robust recovery, as long as the measurement matrix
satisfies sub-Gaussianity. In our setup, we have J = N3

and K = T . Hence, the overall measurement rate of the
proposed technique is

Mproposed & (kN3 +N3T + T log(N1N2/T )),

where & implies greater-than upto a multiplicative constant.

Compressive sensing. Chen et al. [8] showed that for a
matrix of size m × n which can be expressed as a sum of
a rank-k matrix and sparse non-zero columns, robust recov-
ery is guaranteed with high probability under the following
conditions,

p &
r log2(m+ n)

min(m,n)
(5)

γ .
p

k
√
r log3(m+ n)

.

p is the fraction of observations and γ is the fraction of
non-zero columns in the sparse matrix. Adapting it to our

method, we have

Mjoint &
N1N2N3r log2(N1N2 +N3)

min(N1N2, N3)

= rN1N2 log2(N1N2 +N3),

where Mjoint is the number of measurements for joint re-
covery of sparse and low rank matrices. It is clear that the
number of measurements for our proposed method is less
than the number for joint recover of sparse and low-rank
matrix. As an example, consider a hyperspectral image of
size 256 × 256 × 300 and 100 outliers. Let us assume the
background is approximated by a rank-5 matrix. The num-
ber of measurements needed for the proposed sensing tech-
nique would be approximately 10× 5× 300 + 100× 300 +
100 × 16 = 33,100, whereas that for compressive sensing
would be approximately 5 × 256 × 256 × 16 = 524,288.
This provides us a gain of 15× in number of measurements.

4.2. Recovery guarantees for outliers

We look at three conditions for recovery of outliers:
noiseless measurements with knowledge of the exact sub-
space estimate, noisy measurements with knowledge of the
exact subspace estimate, and noisy measurements with an
inexact, rank-k approximation of the subspace. The bounds
and guarantees are based on the MMV variant of CoSaMP
and we will repeatedly invoke the following result from [4].

Theorem 1. (Adapted from Theorem 6 in [4]) Let S be aK
block-sparse signal and let Y = SΦ + E be a set of noisy
compressive sensing measurements, where Φ ∈ RN1N2×M .
If Φ is a random sub-Gaussian matrix, then the estimate
obtained from iteration i of block-based CoSaMP satisfies

‖S − Ŝi‖2,2 ≤
1

2i
‖S‖2,2 + 20

(
‖S − ST ‖2,2 + · · ·

1√
T
‖S − ST ‖2,1 + ‖E‖2,2

)
, (6)

where ST is the best T -term approximation of S, and E is
the additive measurement noise.

In essence, the theorem states that recovery is guaranteed
if M is sufficiently large. Further details about the sens-
ing matrices and number of measurements can be obtained
in [4]. Next, we show the bounds on error with the three
conditions of measurements.

Noiseless and exact subspace. In this case, we have the
following measurement model, Ỹ = P⊥U Y, where the spar-
sity of S̃ is the same as S. Invoking (6), we have

‖S̃ − ˆ̃
Si‖2,2 ≤

1

2i
‖S̃‖2,2, (7)



where S̃ = [̃s1, s̃2, ..., s̃N1N2 ] is the projection of S on com-

plementary subspace of U and ˆ̃Si is the estimate of S̃ after
i iterations of MMV CoSaMP.

Noisy and exact subspace. Assume that the added noise
is bounded as, ‖E2‖2,2 ≤ ε‖S̃‖2,2. Here, ε is a measure of
the signal-to-noise ratio. As before, taking complementary
projection, we have Ỹ = S̃Φ + Ẽ2. Invoking (6), we have

‖S̃ − ˆ̃
Si‖2,2 ≤

1

2i
‖S̃‖2,2 + 20‖Ẽ2‖2,2

≤
(

1

2i
+ 20ε

)
‖S̃‖2,2. (8)

Noisy and inexact subspace. Let Û be estimated rank k
estimate of the columns of L and Λ = [λ1,λ2, ...,λN1N2

]
represent coefficients for each column. Further, let the fol-
lowing bound hold

‖P>
Û
Uλk‖ ≤ εs‖s̃k‖, (9)

where εs is a small constant. Also, let ‖Φ‖2,2 ≤ η. Now
taking the complementary projection as before, we have

P>
Û
Y = P>

Û
UΛΦ + P>

Û
S2Φ + P>

Û
E2

= Es + S̃2Φ + Ẽ2, (10)

where Es = P>
Û
UΛΦ. P>

Û
UΛ can be treated as the error

in T -term approximation of S̃.The ‖ · ‖2,2 and ‖ · ‖2,1 error
bounds on this term,

‖Es‖2,2 =

|Ω3|∑
k=1

‖P>
Û
UλkΦ‖22

1/2

(11)

≤

|Ω3|∑
k=1

‖P>
Û
Uλk‖22‖Φ‖22,2

1/2

(12)

≤

η2

|Ω3|∑
k=1

‖s̃k‖22ε2s

1/2

= ηεs‖S̃‖2,2.

Similarly, we have

‖Es‖2,1 ≤ εs‖S̃‖2,1. (13)

Invoking (6), we get

‖S̃ − ˆ̃
Si‖2,2 ≤

1

2i
‖S̃‖2,2+

20

(
‖Es‖2,2 +

1√
T
‖Es‖2,1 + ‖Ẽ2‖2,2

)
≤
(

1

2i
+ 20(ε+ εs)

)
‖S̃‖2,2+

20εs
1√
T
‖S̃‖2,1. (14)

(a) Image of urban aerial snap-
shot with anomalous loca-
tions highlighted in red.

(b) Image of deepwater horizon
spill with anomalous loca-
tions highlighted in red.

Figure 3: Synthetic images used for experiments. The ur-
ban image has 71 anomalous pixels and the deepwater spill
image has 48 anomalous pixels.

Equation (14) establishes the effect of model mismatch as
well as measurement noise on our estimation algorithm.
Provided that the model is well estimated and the noise en-
ergy is bounded, the estimated anomalous locations can be
very accurate. The synthetic and real experiments section
gives a brief insight into the effect of noise and model error.

Joint recovery. Ha et al. [13] discussed error bounds for
recovery of low rank and sparse matrix from compressed
and noisy data. For brevity, we skip the complete expression
of error and request readers to refer to [13] for analysis on
noise. Table 1 summarizes the number of measurements
and the measurement noise for various methods.

5. Synthetic experiments
We compare our proposed technique against two com-

pressive sensing techniques for recovering data from a low
rank and sparse matrix, SPaRCS [27], which is a greedy
technique and ADMM implementation of Robust PCA [28].
We create synthetic data by decomposing the data as sparse
and low rank component using Robust PCA and then adding
the two together. Figure 3 shows the two hyperspectral im-
ages with anomalous locations highlighted as red pixels.

Recovery accuracy. We performed recovery of the
anomalous locations with n1 = 500 measurements to ob-
tain subspace and by sweeping n2 from 1,000 to 15,000
random-permuted Hadamard measurements. For compar-
ison, we recovered a rank-6 matrix as well as a column-
sparse matrix from the compressive measurements using
SPaRCS and Robust PCA under corrupted columns model
[8]. We define success ratio as the fraction of anomalous
locations correctly identified. Figure 4 and 5 compares
the success fraction for both the hyperspectral images un-
der two different noise conditions. Our method outper-



Method Number of measurements Bounds on recovery accuracy

Full measurements N1N2N3 Measurement noise
Compressive sensing O(rN1N2 log2(N1N2 +N3)) Joint low rank and sparse recovery [13]
Proposed method O(rN3 +N3T + T log(N1N2/T ))) a‖S̃‖2,2 + b√

T
‖S̃‖2,1

Table 1: Comparing various methods based on number of measurements and the estimation error in anomalous pixels. Our
proposed method requires far fewer measurements than even compressive sensing.
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Figure 4: Comparison of success ratio with various meth-
ods for the urban scene with 79 anomalies. Success frac-
tion is defined as the number of outliers correctly identified.
N/M is the ratio of signal dimension to number of mea-
surements.
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Figure 5: Comparison of success ratio with various meth-
ods for deepwater spill with 483 anomalies. Success frac-
tion is defined as the number of outliers correctly identified.

forms other compressive sensing based methods, particu-
larly when the measurements are far fewer than the dimen-
sion of the signal.

RoC curve. We compared our proposed method against
the Reed Xiaoli (RX) detector for anomalies [21]. We arti-
ficially introduced 71 targets in the deepwater image shown
in Figure 3. The comparison is made with the receiver op-
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Figure 6: RoC curve comparing our method and the Reed
Xiaoli (RX) detector. Our method outperforms the RX de-
tector and needs fewer measurements.

erating characteristic (RoC) curve, which is a plot of the
fraction of detected targets (FoDT) against the false alarm
rate (FAR). RoC curve for the RX detector was obtained
by varying the threshold of detection. RoC curve for our
proposed method was obtained by varying the number of
anomalous targets to detect. Number of measurements for
our method were increased linearly with the number of
anomalies to estimate. Figure 6 shows RoC for the two
methods. Our method outperforms the RX detector by a
large margin and also needs fewer measurements, which is
strongly in favor of our model.

Effect of noise and number of measurements. Table 2
shows success fraction as a function of noise and the num-
ber of initial measurements for a 128 × 128 × 366 dimen-
sional hyperspectral image with 71 anomalous pixels. It is
evident that noise plays a significant roles in estimation of
outliers. For estimating the subspace, measurements greater
than 400 are sufficient for good accuracy. Effect of high
noise can also be seen in Figure 5b, with Robust PCA and
SPaRCS outperforming our method for large number of
measurements. This is consistent with our theoretical guar-
antees, where we showed in (14) that there is a significant
effect of measurement noise on estimation accuracy.



SNR Percentage of correctly detected targets
(dB) n1 = 100 n1 = 400 n1 = 800 n1 = 1000

40 60.06 68.99 68.20 70.79
60 88.59 91.92 92.37 91.66
80 96.59 98.53 98.28 98.31

Table 2: Percentage of correctly detected targets as a
function of SNR and number of initial measurements for
128×128×356 hyperspectral image of an urban scene. n1

represents the number of spatial locations at which spectral
signature was recorded to estimate the subspace.

Figure 7: Setup for DMD-based hyperspectral imaging.
The objective lens (A) focuses light onto the DMD (B). The
light is then measured by the spectrometer consisting of a
condenser lens (E) that focuses light onto an iris (F), which
is then collimated by the lens (G). The collimated light is
diffracted by a reflective diffraction grating (H), which is
then focused by lens (I) onto the line sensor (J).

6. Real data experiments
To validate our proposed sensing method, we built a vis-

ible (400-700nm) hyperspectral camera based on architec-
ture proposed by Li et al. [15] (see Figure 7). We show three
examples of anomaly detection to demonstrate success of
our proposed method.

6.1. Experiment on data from SpecTIR

We performed anomaly detection on Deepwater Hori-
zon oil-spill data obtained from SpecTIR [22], by obtain-
ing 500 random pure spectral measurements for estimating
subspace for background spectra and then obtaining 3000
spatially multiplexed measurements for estimating a total of

Figure 8: Output of our algorithm on first real scene (a).
The scene is made of “ICCP 2017” printed on a paper with
a hole in the letter “P”. A white LED is situated behind a
diffuser at the location of this hole. Detected anomalies are
shown in red in image (b).

200 outliers. Figure 1 shows the 256×256×360 hyperspec-
tral image we used for estimating outliers and the result of
our algorithm. We observe that except a few points, all the
estimated anomalies lie on the oil slick locations, identified
by gray colored streaks in the image.

6.2. Experiment on data from our imaging setup

We tested our algorithm on two scenes to estimate 5-
8 outliers with the optical setup we built. We performed
anomaly detection on 64 × 64 dimensional images with 50
spectral bands between 350− 820nm.

Subspace estimation. Instead of obtaining subspace by
randomly sampling the scene, we initially acquire a very
low spatial resolution hyperspectral image, as this maxi-
mizes light throughput. If only a few anomalies are present,
this method would still give a very good estimate of the sub-
space. In our experiments, we estimated subspace by taking
an 8× 8 hyperspectral image of the scene.

Scene 1. In our first experiment, we tested our sensing
method on a scene made of “ICCP 2017” printed on a white
paper with a hole in the letter “P”, as shown in red circle
in Figure 8. A white LED light with a spectral signature
significantly different from the paper is used to illuminate
the hole; hence, the region corresponding to the hole is the
anomaly that we seek to detect. We estimated ten anoma-
lous pixels from 250 permuted Hadamard measurements.
Results are shown in Figure 8 and spectral signatures at
some representative locations are shown in Figure 9.

Scene 2. In our second experiment, we tested our sens-
ing method on a scene printed on paper with primarily red
colors and four pixels illuminated by a laser, as show in



Figure 9: Spectral signatures at some representative loca-
tions for the first scene. The noticeable peak of the anoma-
lous pixel is due to a white LED.

white circle in Figure 10. Since the laser is also red, it is
not easy to differentiate with naked eyes. We estimated a
four anomalies from 50 permuted hadamard measurements.
Results are showing in Figure 10 and spectral signatures at
some representative locations are shown in Figure 11.

Discussion. Success of anomaly detection with subspace
modeling for the background relies on obtaining a good es-
timate of the subspace. A lower rank representation would
not sufficiently represent the background which would give
erroneous results. Since we estimated subspace from a
downsampled version of the hyperspectral image, the spec-
trum of anomalous pixels may show up if higher rank is
used. Figure 12 shows two failure cases with a lower and a
higher rank subspace. Figure 13 shows residue after remov-
ing contribution from background for a subspace of rank 5,
8 and 12. Under estimation of rank gives error in regions
other than the anomalies and an over estimate removes con-
tribution due to anomalies. This problem exists with all
anomaly detection algorithms. Erroneous representation of
background spectra results in error in anomalies detected.

Prior knowledge of the complexity of the scene is def-
initely of help to estimate the rank of subspace. Further,
smoother profiles are harder to differentiate. In our two ex-
amples, the stark difference between spectrum of laser and
background made it easier to estimate outliers with a 4 di-
mensional subspace. On the other hand, the spectrum of
white LED is smooth, making it harder to differentiate.

7. Conclusion
We presented a novel sensing method that directly ob-

tains anomalies in a hyperspectral image without requiring
the measurement of the complete image. Simulations and
theoretical guarantees are strongly in favor of our proposed
method. We also demonstrated a lab prototype that success-

Figure 10: Output of our algorithm on second real scene
(b). The scene is made of a printed paper with primarily red
color and four of the pixel locations are shone by a red laser.
It is not easy to discern the location of laser with naked
eye, but our algorithm identifies the anomalous locations
with only 100 spectral measurements, shown as green dots
in image (b).

Figure 11: Spectral signatures at some representative lo-
cations for the second scene. The noticeable peak of the
anomalous pixel is laser light. Although the peak for the
anomalous pixel is high, the energy is similar to all the other
pixels.

fully detected anomalies in the scene. The method is partic-
ularly appealing as it detects anomalies with few measure-
ments. As a consequence, we can develop imagers for ge-
ological surveillance that have higher temporal resolutions
or better noise properties enabled by temporal averaging.
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Figure 12: Effect of model mismatch for anomaly de-
tection. Shown here are anomaly detection results with
(left) underestimated subspace rank of 5 and (right) over-
estimated subspace rank of 12. Over estimation captures
spectral profile of anomalies as well, and hence are not iden-
tified as anomalies.

Figure 13: Residual image with subspace ranks of (left)
five, (middle) eight, and (right) twelve. If the subspace rank
is low, background and the anomalies have similar error.
If rank is high, the residue is only noise, as the subspace
captures anomalies as well. With a subspace of rank 8, the
anomalous pixels within the letter “P” is clearly evident.

References
[1] Y. August, C. Vachman, Y. Rivenson, and A. Stern. Com-

pressive hyperspectral imaging by random separable projec-
tions in both the spatial and the spectral domains. Appl. Op-
tics, 52(10):D46–D54, 2013. 3

[2] A. Banerjee, P. Burlina, and R. Meth. Fast hyperspectral
anomaly detection via svdd. In IEEE Intl. Conf. Image Pro-
cessing, 2007. 3

[3] R. G. Baraniuk. Compressive sensing. IEEE Signal Process-
ing Magazine, 24(4):118–121, 2007. 2

[4] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde.
Model-based compressive sensing. IEEE Trans. Info. The-
ory, 56(4):1982–2001, 2010. 2, 4

[5] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente,
Q. Du, P. Gader, and J. Chanussot. Hyperspectral unmix-
ing overview: Geometrical, statistical, and sparse regression-
based approaches. IEEE J. Selected Topics in Appl. Earth
Observations and Remote Sensing, 5(2):354–379, 2012. 3

[6] V. Cevher, A. Sankaranarayanan, M. F. Duarte, D. Reddy,
R. G. Baraniuk, and R. Chellappa. Compressive sensing for
background subtraction. In European Conf. Computer Vi-
sion, 2008. 3

[7] A. Chakrabarti and T. Zickler. Statistics of Real-World Hy-
perspectral Images. In IEEE Conf. Computer Vision and Pat-
tern Recognition, 2011. 2

[8] Y. Chen, H. Xu, C. Caramanis, and S. Sanghavi. Robust ma-
trix completion and corrupted columns. In Intl. Conf. Ma-
chine Learning, 2011. 4, 5

[9] E. Cloutis. Review article hyperspectral geological remote
sensing: evaluation of analytical techniques. International J.
Remote Sensing, 17(12):2215–2242, 1996. 1

[10] S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado.
Sparse solutions to linear inverse problems with multi-
ple measurement vectors. IEEE Trans. Signal Processing,
53(7):2477–2488, 2005. 2, 4

[11] M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska,
T. Sun, K. F. Kelly, and R. G. Baraniuk. Single-pixel imag-
ing via compressive sampling. IEEE Signal Processing Mag-
azine, 25(2):83, 2008. 3

[12] M. Golbabaee and P. Vandergheynst. Hyperspectral image
compressed sensing via low-rank and joint-sparse matrix re-
covery. In IEEE Intl. Conf. Acoustics, Speech And Signal
Processing, 2012. 2

[13] W. Ha and R. F. Barber. Robust pca with compressed data.
In Adv. Neural Info. Processing Systems, 2015. 5, 6

[14] J. C. Harsanyi and C.-I. Chang. Hyperspectral image clas-
sification and dimensionality reduction: An orthogonal sub-
space projection approach. IEEE Trans. Geoscience and Re-
mote Sensing, 32(4):779–785, 1994. 1

[15] C. Li, T. Sun, K. F. Kelly, and Y. Zhang. A compressive sens-
ing and unmixing scheme for hyperspectral data processing.
IEEE Trans. Image Processing, 21(3):1200–1210, 2012. 3,
7

[16] S. Matteoli, M. Diani, and G. Corsini. A tutorial overview of
anomaly detection in hyperspectral images. IEEE Aerospace
and Electronic Systems Magazine, 25(7):5–28, 2010. 1

[17] D. Needell and J. A. Tropp. Cosamp: Iterative signal recov-
ery from incomplete and inaccurate samples. Applied and
Computational Harmonic Analysis, 26(3):301–321, 2009. 2

[18] Z. Pan, G. Healey, M. Prasad, and B. Tromberg. Face recog-
nition in hyperspectral images. IEEE Trans. Pattern Analysis
and Machine Intelligence, 25(12):1552–1560, 2003. 1

[19] Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad. Orthogonal
matching pursuit: Recursive function approximation with
applications to wavelet decomposition. In Asilomar Conf.
Signals, Systems and Computers, 1993. 2

[20] K. I. Ranney and M. Soumekh. Hyperspectral anomaly de-
tection within the signal subspace. IEEE Geoscience and
Remote Sensing Letters, 3(3):312–316, 2006. 3

[21] I. S. Reed and X. Yu. Adaptive multiple-band cfar detec-
tion of an optical pattern with unknown spectral distribu-
tion. IEEE Trans. Acoustics, Speech, and Signal Processing,
38(10):1760–1770, 1990. 2, 6

[22] SpecTIR. Spectir, Advanced hyperspectral and geospa-
tial solutions. http://www.spectir.com/
free-data-samples/. 1, 7

[23] Y. Tarabalka, J. Chanussot, and J. A. Benediktsson. Segmen-
tation and classification of hyperspectral images using water-
shed transformation. Pattern Recognition, 43(7):2367–2379,
2010. 1

http://www.spectir.com/free-data-samples/
http://www.spectir.com/free-data-samples/


[24] J. A. Tropp. Just relax: Convex programming methods for
identifying sparse signals in noise. IEEE Trans. Info. Theory,
52(3):1030–1051, 2006. 2

[25] F. Vagni. Survey of hyperspectral and multispectral imaging
technologies. DTIC Document, 2007. 3

[26] A. Wagadarikar, R. John, R. Willett, and D. Brady. Single
disperser design for coded aperture snapshot spectral imag-
ing. Appl. Optics, 47(10):B44–B51, 2008. 3

[27] A. E. Waters, A. C. Sankaranarayanan, and R. Baraniuk.
Sparcs: Recovering low-rank and sparse matrices from com-
pressive measurements. In Adv. Neural Info. Processing Sys-
tems, 2011. 2, 5

[28] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma. Robust
principal component analysis: Exact recovery of corrupted
low-rank matrices via convex optimization. In Adv. Neural
Info. Processing Systems, 2009. 3, 5

[29] Y.-Q. Zhao and J. Yang. Hyperspectral image denoising via
sparse representation and low-rank constraint. IEEE Trans.
Geoscience and Remote Sensing, 53(1):296–308, 2015. 2


