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Abstract: We introduce and analyze the concept of space-spectrum uncertainty for certain
commonly-used designs of spectrally programmable cameras. Our key finding states that, it
is impossible to simultaneously capture high-resolution spatial images while programming the
spectrum at high resolution. This phenomenon arises due to a Fourier relationship between the
aperture used for obtaining spectrum and its corresponding diffraction blur in the (spatial) image.
We show that the product of spatial and spectral standard deviations is lower bounded by λ

4πν0
femto square-meters, where ν0 is the density of groves in the diffraction grating and λ is the
wavelength of light. Experiments with a lab prototype for simultaneously measuring spectrum
and image validate our findings and its implication for spectral filtering.
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1. Introduction

Spectrum is often a unique feature of materials and is used for identification and classification
across a broad range of fields such as geology [1], biological imaging [2, 3] and material
identification [4, 5]. Tools such as the hyperspectral camera capture the spectrum of a scene
which is subsequently used for identification and classification purposes.

Capturing the full spectrum, while useful, is also quite wasteful especially if we are only
interested in measuring similarity of the spectral profile at each pixel to a small collection of
reference spectra. It is hence useful to have cameras that can optically perform this comparison.
Such cameras, called spectrally-programmable cameras, have been demonstrated [6, 7] with
compelling applications in computer vision. This paper evaluates a spectrally programmable
cameras involving a dispersive element, such as a diffraction grating or a prism, and a spatial
light modulator (SLM).

1.1. Problem setting

The analysis in this paper is for the optical setup shown in Fig. 1, commonly used in prior art for
spectral filtering [4,7–9]. The optical system consists of a series of lenses of focal length f , each
subsequent pair separated by 2 f . The setup relays the image plane from plane P1 to P3 with a
pupil code in P2. A diffraction grating placed on P3 provides a spectral dispersion of the light.
The dispersed light is focused on plane P4 to form the so-called rainbow plane, where each point
corresponds to the average intensity of light of the whole scene for a single wavelength. The
image on P3 is simply relayed on to plane P5. Arbitrary spectral filtering can then be performed
by placing an (SLM) on the rainbow plane (P4) and measuring image on plane P5. Intuitively,
planes P1 to P3 is a simple camera with an aperture in its Fourier plane, and planes P2 to P4 is a
spectrometer with the aperture replacing a slit. The setup provides an insight into the tradeoff
between spatial and spectral resolutions. While a camera requires a large and open aperture for a
compact spatial blur, this would lead to severe loss in spectral resolvability, as a spectrometer
requires a narrow opening. Our goal is to formalize the role played by the shape of the pupil
code in deciding spatial and spectral resolution.
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Fig. 1: Optical setup for capturing images with spectral modulation. P1 is the image plane of the
objective lens, P2 contains spatial frequencies of the image, where we place a pupil code, a(x, y). P3
contains the image plane blurred by the aperture function. We place a diffraction grating at this plane to
disperse light into different wavelengths. P4 contains the resultant spectrum and P5 is a flipped copy of P3.
In a camera configuration, the pupil code consists of an open aperture and leads to sharp image but blurred
spectrum. In spectrometer configuration, the pupil code is a slit and leads to sharp spectrum but blurred
image. Our paper formalizes the role played by pupil code for spatial and spectral resolutions.

1.2. Main Result

We show that the pupil code a(x, y) introduces a spectral and spatial blur, hλ(λ) and hx(x)
respectively with standard deviations σλ and σx (detailed expression in eq. (6), (7)). Our main
contribution is in the form of a space-spectrum bandwidth product that relates the spectral
resolution at which light can be modulated and the spatial resolution of captured image. This is
encapsulated in the following theorem,

Theorem 1 For the spectrally-coded imaging architecture shown in Fig. 1, the product of spatial
and spectral standard deviations σx and σλ respectively is related as

σxσλ ≥
λ

4πν0
, (1)

where ν0 is the density of slits in the diffraction grating.

This result was first explored in [7] and [9] where they stated that a slit trades off spatial and
spectral resolution. Our paper builds on their results by providing a concise expression for the
tradeoff. We prove that a Gaussian-shaped pupil code achieves the lower bound and leads to most
compact spatial blur for a targeted spectral blur. We also show that for narrowband filtering, the
spatial blur is affected by the pupil code as well as the shape of the narrowband filter, and that a
slit, a commonly used narrowband filter shape leads to a spectrally-varying spatial blur. Instead,
using a Gaussian-shaped narrowband filter achieves spectrally-independent spatial blur, thereby
being the optimal candidate for spectral programming.

1.3. Implications

The space-spectrumbandwidth product introduces an uncertainty in spectrally-modulated cameras,
stating that one cannot arbitrarily code spectrum at high resolutionwithout loss in spatial resolution.



We demonstrate the impact of uncertainty by building a spectrally-programmable camera and
showing that blocking one of two closely-spaced narrowband sources cannot be done without
severe loss in spectral resolution.

Hyperspectral imagers. Apart from programmable spectral filtering, several hyperspectral
imaging architectures [8–10] rely on obtaining spectrally-modulated images. Our findings have a
direct implication on such setups, as a key requirement of such setups is to capture high resolution
images without sacrificing spectral resolution. Hence, the space-spectrum bandwidth product can
serve as a design guide to carefully choose the pupil code to obtain desired spatial and spectral
resolutions.

Spatially-coded cameras. We note that the analysis in the paper does not apply to many
spectral cameras where there is no pupil plane coding. Cameras such as the pushbroom camera
and the coded aperture snapshot spectral imager (CASSI) [11,12] only perform spatial coding
and, as such, are not affected by this result. Since such systems code space and then measure its
spectrally-sheared image, the spatial code only affects the spectral resolution and not the spatial
resolution.

2. Prior Work

We start our discussion by talking about capturing images with arbitrary spectral filters and then
briefly state its applications. We then state the fundamental tradeoffs based on system parameters.

Measurement model. Consider a scene’s hyperspectral image (HSI) represented by H(x, y, λ),
where (x, y) represent spatial coordinates and λ represents wavelength. Our goal is to optically
obtain a spectrally-filtered image of the scene with a spectral filter. Specifically, given a spectral
filter f (λ), our aim is to implement a camera that captures the following grayscale image,

I(x, y) =
∫
λ

H(x, y, λ) f (λ)dλ. (2)

Applications of spectral filtering. The ability of arbitrarily code spectrum enables a wide
gamut of applications. This includes adaptive color displays [6], programmatically blocking
illuminants [7], and detecting materials [4, 5]. The key advantage in all these applications is
to not measure the complete HSI, but only the desired spectral projections, which leads to
fewer measurements and higher signal to noise ratio (SNR). Such a system can also be used for
compressively sensing the complete HSI [8, 9] which relies on capturing projection of a scene’s
HSI on random or designed spectral filters.

Spectrally-programmable camera architecture. Spectral programming is an ubiquitous
technique that is often used in imaging applications, such as Bayer filters for RGB cameras or
narrowband spectral filters for fluorescence microscopy [3]. Static filters offer arbitrarily high
spectral resolution, but are not tailored for applications that require changing filters rapidly; while
this can be achieved with filter wheels, the speed of such devices is constrained by the speed at
which the filters can be changed. Electronically tuning filters, in part can be achieved by using a
tunable filter [13] where liquid crystal (LC) cells are used to obtain a combination of narrowband
spectral filters. LC filters however are typically slow as they require large settling times.
The most practical way of implementing rapidly changeable programmable spectral filters is

to rely on the setup shown in Fig 1. Here, a dispersion element such as a grating or prism is used
to create the so-called rainbow plane [6] where each point corresponds to intensity of a single



wavelength of the whole scene. By placing a spatial modulator (SLM) on this plane, one can
achieve arbitrary spectral coding. This approach is similar to replacing a sensor in a spectrometer
with an SLM, and has been the defacto way of spectral coding in some of the past works [7, 8].

The SLM-based approach has certain advantages. Since SLMs are fast (often in excess of
60fps), one can achieve high frame rates, which is crucial for imaging dynamic scenes, or settings
that require several rapidly switching spectral filters. Two, the system is potentially capable of
achieving high spectral resolution without sacrificing capture time. However, as we will see
next, a high spectral resolution has a debilitating effect in the form of a severe loss in spatial
resolution. The focus of this paper will be on the fundamental trade-off of spectral and spatial
resolutions when using an SLM-based programmable camera. For brevity, we will henceforth
refer to SLM-based programmable camera as just spectrally-programmable camera.

Time-bandwidth product. Our main result is based on the time-bandwidth product [14],
which we state here for completeness. Let x(t) be a time-domain signal, and let X( jω) be its
continuous-time Fourier transform. We define the spread of time-domain and frequency-domain
signals as,

σt =

√∫
t

t2 |x(t)|2dt√∫
t
|x(t)|2dt

and σω =

√∫
ω
ω2 |X( jω)|2dω√∫
ω
|X( jω)|2dω

. (3)

Then the time-bandwidth product states that,

σtσω ≥
1

4π
. (4)

As a consequence, one cannot achieve simultaneous localization in time and frequency. Our
result is a translation of the time-bandwidth product applied to spatial and spectral signals which
arises Fourier transform property of a thin lens [15]. Therefore, the blurs in space and spectrum
have a scaled Fourier-pair relationship.

3. Fundamental Limits of Spatial/Spectral Resolution

Space-spectrum tradeoff. A key component of a spectrometer is a slit that leads to high
resolution spectral measurements. In similar spirit, a programmable camera would also
necessitate a narrow slit to ensure that spectrum can be modulated at high resolution. However,
such a narrow slit leads to a severe loss in spatial resolution, since imaging at high resolution
requires a large and open aperture. The authors in [6] note that a large slit leads to loss of
spectral resolution, but they do not mention what happens to the spatial resolution. The authors
in [7] identified this tradeoff and stated an approximate relationship between spectral and spatial
tradeoff for fully open aperture and demonstrated that high spectral resolution lead to blurry
images. We formalize the result and show that such a tradeoff applies to any pupil code shape
and can be concisely stated as a space-spectrum bandwidth product. In the upcoming sections,
we will formalize the spatial and spectral resolutions that result from the choice of a pupil code.

Spectral and spatial blurs. We present the spatial and spectral blurs here and refer the
interested readers to Appendix A for a detailed derivation. For brevity, we show the blur along
x-axis alone, as there is no spectral dispersion along y-axis. Let a(x) be the shape of the aperture
function and let A(u) be its Fourier transform. Then the spectral and spatial blur functions,

hλ(λ) = |a(−λ f ν0)|
2, hx(x) =

����A (
−

x
λ f

)����2 . (5)



We observe that the blur in space and spectrum are not independent; in fact, they behave similar to
a Fourier-transform pair, with appropriate scaling. Our goal is to show that this interdependence
between spatial and spectral blur has a very specific structure and can be lower bounded –
implying that we cannot arbitrarily resolve in both domains.

3.1. The space-spectrum uncertainty principle

Our main result, stated in Theorem 1, suggests that the spatial and standard deviations are related
by the inequality, σxσλ ≥

λ
4πν0

. We now outline the proof of our theorem.

Proof. We define the spectral and spatial standard deviations as,

σλ =

√√√∫
λ
λ2hλ(λ)dλ∫
λ

hλ(λ)dλ
=

√√√∫
λ
λ2 |a(−λ f ν0)|2dλ∫
λ
|a(−λ f ν0)|2dλ

(6)

σx =

√√√∫
x

x2hx(x)dx∫
x

hx(x)dx
=

√√√√√√√∫
x

x2
���A (
− x
λ f

)���2 dx∫
x

���A (
− x
λ f

)���2 dx
, (7)

which are similar to time and frequency spreads defined in eq. (3) with appropriate scaling.
Given that σt is the spread of x(t), the spread of a scaled function x̂(t) = x(st) is σ̂t = sσt . From
eq. (4) and substituting t = λ f ν0 and ω = x

f λ ,(
1

f 2λ2

)
σ2
x ( f

2ν2
0 )σ

2
λ ≥

1
16π2 =⇒ σ2

xσ
2
λ ≥

λ2

16π2ν2
0

(8)

σxσλ ≥
λ

4πν0
(9)

Implication. We make some observations about the uncertainty principle here.

• Invariance to scaling. The bandwidth product does not change even if the aperture is
stretched or squeezed. If the aperture a(x) is replaced by a(sx), then spectral blur changes to

hλ(λ) = |a(−sλ f ν0)|
2 and the spatial blur changes to

���A (
− x

sλ f

)���2. This changes the spectral
and spatial variances to s2σ2

λ and σ2
x/s

2, thereby keeping the product a constant.

• Invariance to power of lenses. The bandwidth product is independent of focal length of the
system, implying that one cannot expect any increase in product of standard deviations by
changing the lenses.

• Dependence on groove density. The bandwidth product is a function of groove density ν0, and
decreases with increasing density. In theory, one can achieve arbitrarily low space-bandwidth
product by having high groove density, but the limiting factor becomes the aperture size of
lenses.

• Dependence on wavelength. The bandwidth product is directly proportional to wavelength.
This is not a surprising result. The limiting case of our statement, where σλ is several hundreds
of nanometers is just a normal grayscale imager, and in that case, the expression looks very
similar to Abbe’s diffraction limit [16]. However, one may make the expression independent of
wavelength by using lower bound of the spectral range,

σxσλ ≥
λmin
4πν0

(10)
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Fig. 2: x − λ blur for Gaussian window of various sizes. The four figures illustrate the spatio-spectral
blur for various window sizes. The blur kernel was computed for λ = 500 nm, f = 100 mm and a groove
density of 300 grooves/mm. There is a visible trade off between the two resolutions. The appropriate
window size depends on the application; a camera with low spectral resolution requirement can use a
σ = 500µm window, while one with stringent spatial resolution requirements may use a σ = 1000µm
window.

Achievability of lower bound. As in the case of time-frequency uncertainty, there exists a
pupil code function that has its space-spectrum bandwidth product equal to λ

4πν0
. This is achieved

by the family of Gaussian windows:

a(x, y) = exp
{
−x2

2σ2

}
. (11)

The spectral and spatial blur are then given by,

f̃ (λ) = exp

{
−
λ2 f 2ν2

0
σ2

}
, g̃(x) = exp

{
−

4π2σ2x2

λ2 f 2

}
. (12)

Figure 2 shows the simulated “uncertainty" box at 500 nm of Gaussian windows of various
widths. We simulated a system comprising of 75 mm lenses and a diffraction grating with a
groove density of 300 grooves/mm. Evidently, as we squeeze along one axis, the other axis
stretches with the product of widths being a constant at 145.9 nm·µm. Next, we validate our
findings with an optical setup that implements the schematic in Fig. 1 and capture scenes with
various aperture shapes.

4. Experiments

Optical setup. We built an optical setup shown in Fig. 3 with relevant components marked.
The setup is a minor modification of the schematic shown in Fig. 1. We placed a spatial light
modulator (SLM) on plane P2 which enabled display of various coded apertures, and a diffraction
grating in plane P3. The spectral measurement camera is on plane P4. Instead of placing spatial
camera on P5, we place it on P3 (using beamsplitter BS1). Since we do not code the rainbow
plane P4, image on P3 and P5 are equivalent. Focal length of all our lenses was 75 mm and the
diffraction grating had 300 grooves/mm.

Visualization of spectral and spatial resolutions. To illustrate our hypothesis, we placed a
USAF resolution chart on the image plane P1. The scene was illuminated with a cool white
compact fluorescent lamp (CFL) which is comprised of several narrow peaks. This setup enabled
us to simultaneously visualize sharp spectrum as well as sharp spatial features. Figure 4 shows
images and spectra for some representative cases. Each row shows results for a specific coded
aperture, whereas each column shows results for a fixed spectral resolution. The trend of
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Fig. 3: Schematic and image of our lab prototype. We displayed various patterns on SLM to form coded
apertures to evaluate spatial and spectral resolutions. The spectral camera was tilted to capture the first
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Fig. 4: Visualization of spectral and spatial resolutions. We illuminated a USAF resolution target with
a CFL lamp. We varied aperture types and widths to get spatial and spectral measurements. Each row
shows image and spectrum for a specific aperture, and each column shows image and spectrum for a fixed
spectral standard deviation. The results clearly illustrate the tradeoff between spatial and spectral resolution.

decreasing spectral resolution with increasing spatial resolution is clearly visible. Further, a
Gaussian aperture is superior to slit in terms of greater spatial resolution for the same spectral
resolution, which agrees with our theoretical findings.

Quantitative verification. We illuminated a pinhole with a spectrally-narrowband light source
with a central wavelength of 670 nm and an FWHM of 3 nm. We then captured both spectrum of
the light source and image of the pinhole, which we then used for computing the corresponding
standard deviations. Figure 5 compares reciprocal of spatial resolution against spectral resolution.
The two plots show a straight line, thereby verifying that the product of spatial and spectral
resolutions is a constant. We also observe that the line for Gaussian aperture is very close to the
theoretically optimal line, thereby confirming that the lower bound is tight, even in practice.
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Fig. 5: Quantitative measurement of resolutions. We captured spatial and spectral measurements using
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Fig. 6: Schematic and image of our prototype for spectral programming. We illuminated a USAF
target with 520 nm and 532 nm lasers. We then blocked 532 nm with a spatial mask on the rainbow plane.
Images were captured with various slit widths to show the effect of space-spectrum uncertainty.

4.1. Spectral Programming

Effect of edge-pass filter. The tradeoff between spectral and spatial resolution affects how well
the spectrum can be coded. To test this, we illuminate two closely spaced spatial points in a scene
with two narrowband light sources (520 nm and 532 nm). We then attempt to block the 520 nm
laser with various coded apertures and observe the spatial image. Figure 6 shows the schematic
and our lab prototype for spectral programming. The setup is built very similar to the schematic
shown in Fig. 1 with a spatial mask placed in plane P4. The results are shown in Fig. 7. With
a broad aperture, it is not possible to effectively block one of the two lasers, shown in fourth
column. A narrow aperture can lead to effective blocking (compare first and last columns) but
with loss in resolution.

Effect of the shape of a narrowband filter. We now show that a slit has unintended implication,
when used as a narrow band filter. In order to perform narrowband spectral filtering, an intuitive
choice is to place a narrow slit on the rainbow plane P4 and a camera on plane P5. This results in
a spectra that looks similar to the example in Fig. 8(a). While such a mask works well for the
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Fig. 7: Spectral filtering with narrowband sources. A consequence of space-spectrum bandwidth
product is the incapability of spectral programming at high resolution. In this example, we show how
blocking one of the two closely spaced narrowband lasers and only be done with severe loss in resolution.

target wavelength, the spatial images corresponding to adjacent wavelengths have severe loss in
spatial resolution.

To understand the effect of a narrowband filter, consider a scene illuminated by amonochromatic
light source of wavelength λ1. The resulting field on rainbow plane,

i4(x) = a (x − λ1 f ν0) . (13)

Now let a spatial mask â(x) centered around λ2 be placed on the rainbow plane. Then the output
just after the mask,

ĩ4(x) = a (x − λ1 f ν0) â (x − λ2 f ν0) . (14)

If both a(x) and â(x) are slits of width W , then the effective width is W − |λ1 − λ2 |, which
decreases with increasing gap between the two wavelengths. This is illustrated by the plots of
PSFs in Fig. 8(c). We utilized the setup in Fig. 6, where we illuminated a pinhole with a 520
nm laser. We placed a spatial mask on a horizontal translation stage to block various adjacent
wavelengths. We then measured the image of a pinhole and fit an appropriate curve to the
measured PSF. Evidently, the PSF has a larger spread as the gap between target wavelength and
central wavelength of filter increases. This is true even if the pupil code were Gaussian mask
and the filter were a slit, as shown in Fig. 8(d). Ideally we require the effective width to be
independent of λ1 and λ2. This is achieved if both pupil plane and the filter have a Gaussian
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Fig. 8: Effect of narrow-band spectral filter on spatial resolution. Spatial resolution is affected by the
pupil code as well as the spatial mask used for creating a narrow-band spectral filter. We illuminated a
pinhole with a 520 nm laser and then swept various spatial masks to filter wavelengths around 520 nm. For
configurations where either the pupil code or the spatial mask was a slit, the spatial resolution got worse
with increasing gap between desired and laser wavelength. In contrast, a configuration with both masks
being Gaussian resulted in a wavelength-independent spatial blur.

shape. In such a case the field,

ĩ4(x) = exp
{
−(x − λ1 f ν0)

2/σ2} exp {
−(x − λ2 f ν0)

2/σ2} (15)
= exp

{
−(λ1 − λ2)

2 f 2ν2
0/σ

2}︸                             ︷︷                             ︸
amplitude

exp
{
−2(x − (λ1 + λ2) f ν0/2)2/σ2}︸                                         ︷︷                                         ︸

aperture shape

. (16)

The output field has a spread that is independent of λ1, λ2 which results in a wavelength-
independent PSF. This is illustrated by the plot of PSFs in 8 (e) with a gaussian aperture as
well as filter shape. Figure 8 (f) compares PSF spread in terms of spatial standard deviation
for various positions of filter, clearly illustrating the wavelength-indepedent blur arising due to
Gaussian-shaped pupil-code and filter.

5. Conclusion

We formalized the tradeoff between spectral and spatial resolution associated with a spectrally-
programmable camera of the type shown in Fig. 1 and stated the space-spectrum uncertainty
principle. We showed through theory, simulations and real experiments that one can finely
resolve space or spectrum, but not both. Our analysis then showed that a Gaussian-shaped
aperture achieves the theoretical lower bound. We concluded our analysis by showing that a
Gaussian-shaped narrowband filter introduces a wavelength-independent spatial blur.
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A. Signal Propagation

We note that all our analysis is for spatially-incoherent light; any phase component is hence
irrelevant. We rely on Fourier transform property of a thin lens [15] as well as the derivation
in [9]. Assume that the complex field distribution on plane P1 is i1(x, y, λ). Then the field
distribution on P2 that is 2 f away is given by the scaled Fourier transform relationship,
i2(x2, y2, λ) =

1
jλ f I1

(
x2
λ f ,

y2
λ f , λ

)
, where I1(u, v) is the Fourier transform of i1(x, y). Propagating

the signal through the optical setup simply requires us to perform such operations iteratively.
Consider a single spatial point on P1 of the form i1(x1, y1, λ) = s(x0, y0, λ)δ(x1 − x0, y1 − y0).

Any arbitrary image can then be treated as infinite such point sources. The intensity distribution
on plane P2 is

i2(x2, y2, λ) =
1

jλ f
s(x0, y0, λ)exp

{
−

2π j
λ f
(x0x2 + y0y2)

}
.

Let a(x, y) be the complex amplitude of the pupil code placed on P2. Then the intensity just after
the aperture is given by,

î2(x2, y2, λ) =
1

jλ f
s(x0, y0, λ)exp

{
−

2π j
λ f
(x0x2 + y0y2)

}
× a(x2, y2) (17)

With a similar derivation, we can show that the field distribution on P3 just before the diffraction
grating is,

i3(x3, y3, λ) =
1

jλ f
Î2

(
x3
λ f

,
y3
λ f

)
=

1
( jλ f )2

s(x0, y0, λ)A
(

x3 + x0
λ f

,
y3 + y0
λ f

)
, (18)

where A(u, v) is the Fourier transform of a(x, y). For simplicity of analysis, we consider the
diffraction grating to be a series of narrow band slits, modeled as an impulse train along x-axis as,

d(x, y) =
∞∑

k=−∞

δ

(
x −

k
ν0

)
, (19)

where ν0 is the groove density. Then the propagated field just after the grating is given by,

î3(x3, y3, λ) = i3(x3, y3, λ)d(x3, y3) (20)

=
1

( jλ f )2
s(x0, y0, λ)A

(
x3 + x0
λ f

,
y3 + y0
λ f

)
×

∞∑
k=−∞

δ

(
x3 −

k
ν0

)
(21)



Using Fourier transform property of lens again, the field on P4 is,

i4(x4, y4, λ) =
1

jλ f
Î3

(
x4
λ f

,
y4
λ f

)
=

1
jλ f

(
1

jλ f

)2
I3

(
x4
λ f

,
y4
λ f

)
∗ D

(
x4
λ f

,
y4
λ f

)
(22)

=
1

jλ f

(
1

jλ f

)2
I3

(
x4
λ f

,
y4
λ f

)
∗

(
δ

(
y4
λ f

) ∞∑
k=−∞

δ

(
x4
λ f
− kν0

))
(23)

= −
1

jλ f
s(x0, y0, λ)

∞∑
k=−∞

a(−(x4 − kν0λ f ),−y4)exp
{

j
2π
λ f
(x0(x4 − kλ f ν0) + y0y4)

}
,

(24)

leading to an equation which shows multiple, spectrally-dispersed copies of the aperture a(x, y)
along the x-axis. Our optical setup is designed to propagate only the first order and hence we
retain the k = 1 copy, giving us,

i4(x4, y4, λ) = −
1

jλ f
s(x0, y0, λ) a(−(x4 − ν0λ f ),−y4)︸                     ︷︷                     ︸

spectrally-shifted a(x, y)

exp
{

j
2π
λ f
(x0(x4 − λ f ν0) + y0y4)

}
.

(25)

Finally, propagating the signal one more lens away, we get,

i5(x, y, λ) =
1

( jλ f )2
exp {− j2πx5ν0} s(x0, y0, λ)A

(
−

x5 + x0
λ f

,−
y5 + y0
λ f

)
. (26)

Intensity measurements. Consider cameras placed on planes P4 and P5 with a spectral
response of c(λ). The intensity measurement on P4,

M4(x4, y4) =

∫
λ
|i4(x4, y4, λ)|

2c(λ)dλ (27)

=

∫
λ

1
λ2 f 2 |s(x0, y0, λ)|

2 |a(−(x4 − ν0λ f ),−y4)|
2c(λ)dλ (28)

= Ŝ
(
x0, y0,

x4
f ν0

)
∗ |a(−x4,−y4)|

2, (29)

where Ŝ (x0, y0, λ) =
1

λ2 f 2 |s(x0, y0, λ)|
2c(λ) is themeasured intensity of the scene point. Extending

to all points (x0, y0), we get,

M4(x4, y4) =

∫
x0

∫
y0

Ŝ
(
x0, y0,

x4
f ν0

)
∗ |a(−x4,−y4)|

2 (30)

= S
(

x4
λ f

)
∗ |a(−x4,−y4)|

2. (31)

Here, S(λ) is an integral of spectrum of all spatial points. Equation (31) shows that the aperture
function a(x, y) results in spectral blur at every scene point. Similarly, the spatial image on P5,

M5(x, y) =
∫
λ
|i5(x5, y5, λ)|

2c(λ)dλ (32)

=
1

λ4 f 4

∫
λ
|s(x0, y0, λ)|

2
����A (
−

x5 + x0
λ f

,−
x5 + x0
λ f

)����2 c(λ)dλ. (33)
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Fig. 9: Simulations on common aperture shapes. (a) compares spectral and spatial standard deviations
whereas (b) shows spectral and spatial MTF at 30% contrast. Gaussian codes achieve theoretical limit when
resolution metric is standard deviation of window.

Computing intensity for all (x0, y0) gives us,

M5(x, y) =
∫
x0

∫
y0

1
λ4 f 4

∫
λ
|s(x0, y0, λ)|

2
����A (
−

x5 + x0
λ f

,−
x5 + x0
λ f

)����2 c(λ)dλ (34)

=
1

λ4 f 4

∫
λ
|s(x5, y5, λ)|

2 ∗

����A (
−

x5
λ f

,−
y5
λ f

)����2︸                                      ︷︷                                      ︸
Spatial blur

c(λ)dλ. (35)

Equation (35) shows that the pupil code a(x, y) introduces a spatial blur equal to a scaled version
of its power spectral density (PSD), |A(u, v)|2. For monochromatic light source, (35) is simply
a convolution of scene’s image with a scaled PSD of a(x, y); for polychromatic sources, this
expression has a spectrally-dependent PSF, which does not follow a convolution model. To make
analysis simple, we assume that the shape of the PSF is approximately the same over a small
range of wavelengths. Then the resultant expression for the spatial image is,

M5(x5, y5) =

(
1

λ4 f 4 |s(x5, y5, λ)|
2
)
∗

����A (
−

x5
λc f

,−
y5
λc f

)����2 (36)

= I(x0, y0) ∗

����A (
−

x5
λc f

,−
y5
λc f

)����2 , (37)

where I(x0, y0) is a scaled grayscale image of the scene, and λc is a chosen, central wavelength
of the spectral range.

Spectral and spatial blurs. For brevity and ease of understanding, we drop the y axis as it
does not affect the spectral blur. From (31) and (37), we get the following expressions for spectral
and spatial blurs,

hλ(λ) = |a(−λ f ν0)|
2, hx(x) =

����A (
−

x
λ f

)����2 . (38)

A.1. Verification using simulations

We provide a validation of our theory with simulations. We specifically compared a box aperture
that simulates a slit or fully open aperture, and a Gaussian aperture. For the purpose of exposition,
we used f = 75 mm and a diffraction grating of 300 groves/mm. Figure 9(a) shows a plot of
spatial and spectral standard deviations and (b) shows a plot of spatial and spectral modulation



transfer function (MTF) at 30% contrast ratio. The plots show a clear trade off between the two
resolutions, independent of resolution metric. We also observe that Gaussian codes achieve the
theoretical limit for standard deviation. Hence we conclude that the space-spectrum bandwidth
product is a tight bound.

References
1. E. Cloutis, “Review article hyperspectral geological remote sensing: Evaluation of analytical techniques,” Int. J.

Remote. Sens. 17, 2215–2242 (1996).
2. N. Colthup, Introduction to Infrared and Raman Spectroscopy (Elsevier, 2012).
3. J. W. Lichtman and J.-A. Conchello, “Fluorescence microscopy,” Nat. Methods 2, 910:1–11 (2005).
4. V. Saragadam and A. C. Sankaranarayanan, “Programmable spectrometry–per-pixel classification of materials using

learned spectral filters,” arXiv preprint arXiv:1905.04815 (2019).
5. T. Zhi, B. R. Pires, M. Hebert, and S. G. Narasimhan, “Multispectral imaging for fine-grained recognition of powders

on complex backgrounds,” in IEEE Intl. Conf. Comp. Vision and Pattern Recognition (CVPR), (2019).
6. A. Mohan, R. Raskar, and J. Tumblin, “Agile spectrum imaging: Programmable wavelength modulation for cameras

and projectors,” in Comp. Graphics Forum, (2008).
7. S. P. Love and D. L. Graff, “Full-frame programmable spectral filters based on micromirror arrays,” J. Mi-

cro/Nanolithography, MEMS, MOEMS 13, 1–11 (2014).
8. X. Lin, G. Wetzstein, Y. Liu, and Q. Dai, “Dual-coded compressive hyperspectral imaging,” Opt. Lett. 39, 2044–2047

(2014).
9. V. Saragadam and A. Sankaranarayanan, “KRISM—krylov subspace-based optical computing of hyperspectral

images,” ACM Trans. Graph. 38, 148:1–14 (2019).
10. Y. August, C. Vachman, Y. Rivenson, and A. Stern, “Compressive hyperspectral imaging by random separable

projections in both the spatial and the spectral domains,” Appl. Opt. 52, D46–D54 (2013).
11. A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral

imaging,” Appl. Opt. 47, B44–B51 (2008).
12. D. Kittle, K. Choi, A. Wagadarikar, and D. J. Brady, “Multiframe image estimation for coded aperture snapshot

spectral imagers,” Appl. Opt. 49, 6824–6833 (2010).
13. Wikipedia, “Liquid crystal tunable filter,” https://en.wikipedia.org/wiki/Liquid_crystal_

tunable_filter (2019). [Online; accessed: 2019-07-18].
14. A. Grami, “Chapter 3 - signals, systems, and spectral analysis,” in Introduction to Digital Communications, (2016),

pp. 41 – 150.
15. J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).
16. S. G. Lipson, H. Lipson, and D. S. Tannhauser, Optical Physics (1995).

https://en.wikipedia.org/wiki/Liquid_crystal_tunable_filter
https://en.wikipedia.org/wiki/Liquid_crystal_tunable_filter

