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ABSTRACT

We explore various image restoration and registration techniques using data obtained

from a mobile device. The first one is non-blind image deblurring. We evaluate the use-

fulness of having extra information from the motion sensors, which give a clue about

camera motion. We show that deconvolution with our kernel as the initial estimate either

converged quicker or produced better results for low texture images when compared to a

complete blind deconvolution. The second problem we address is that of depth estima-

tion using blurred and latent image pair and depth from focus. In the former problem,

we show that with a good estimate of blur kernel from motion sensors, depth can be

estimated very efficiently. The third problem involves evaluation of image registration

algorithms using the information from motion sensors. We show that the registration

results are very accurate and the registration can be done very fast and efficiently even

when one of the images is blurred.
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CHAPTER 1

INTRODUCTION

There has been a recent shift in computation from traditional computers to ubiquitous

mobile phones. With the ever increasing power of the mobiles, executing many of the

image processing algorithms on mobile has been made easy. Further, with the many

peripherals available for the mobile, such as the inertial sensors, controllable focus,

TCP and the bluetooth, computational photography is greatly advanced.

Photography using mobile has the innate problem of shake, which tends to blur the

images. Recovering the sharp image, given only the blurred image is a difficult task

due to the ill-posed nature of the problem. Any information about the motion during

the exposure time can help solve the problem with ease. Data from motion sensors

serves this purpose by providing the approximate trajectory of motion. Even when

taking multiple photographs which need to be aligned, like in the case of HDR images

from multiple normal exposure images, sensors data can be utilized to find the accurate

motion between the two shots.

A recent advancement in the field of computational photography is light field pho-

tography. Instead of a single focused image, multiple images are taken and various

regions of the image can be refocused. A mobile platform, which has the ability to

capture multiple images very fast with variable focus would pave way for research in

this area.

We evaluate some of the important algorithms in computational photography by

using data obtained from the mobile. The aim is to prove that the extra information

available from the motion sensors aides in increasing the efficiency of the image pro-

cessing algorithms.



1.1 Prior work

The best known project involving the camera as an imaging device is the Camera 2.0

project by the Computer Science department at Stanford. The project involved hack-

ing the Nokia N900 firmware to write custom algorithms for focus. Further, the lab

also built a custom camera called Frankencamera which runs Linux and is completely

programmable, making it highly flexible.

While computational imaging on a mobile platform is relatively new, there has been

a lot of work on combining motion sensors with DSLR to perform accurate deblurring.

Joshi et al. (2010) Combines a 3 axis accelerometer and 3 axis gyroscope with a DSLR.

This paper is one of the main motivation for the image deblurring part. Bae et al.

(2013) builds upon Joshi et al. (2010) and explains how blind PSF estimation can be

combined with motion sensors data to improve deblurring. Šindelář and Šroubek (2013)

discusses the usage of a smart phone for deblurring images which have been degraded

by rotational blur. We try to use some of the ideas in this paper for deblurring for

translational blur.

Depth estimation, a well researched topic is of a lot of interest, especially in devices

for gaming like Kinect. A lot of literature exists on depth estimation using stereo vision.

A recent foray into this area is to estimate depth from a sharp and blurred image pair.

While most of the methods estimate it by estimating PSF from individual regions, not

much work has been done on fusing the image data with motion sensors data. We

present some of the methods for estimating depth using motion sensors data along with

sharp and blurred images.

Image registration exists for sharp images but not much literature exists on regis-

tering blurred images. Registration for symmetric blur has been discussed by Ojansivu

and Heikkila (2007), which is more applicable to the case of defocus blur. We deal with

a more non-symmetric case of motion blur and show that inertial sensors gives accurate

registration results.
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1.2 Report layout

The project report is organized in the following manner. The chapter on Basic Theory

presents a brief account of the various algorithms and the mathematics involved in the

project. The chapter on The Device gives an in-depth account of the mobile platform,

the application written for the mobile platform and the host side software. The chapter

on Deblurring explains the implementation of the deblurring algorithm using the data

obtained from the mobile. Image Registration discusses about how inertial sensor data

can be used to reduce the search space of image registration process. Depth Estimation

has two parts, Depth estimation using motion blur and Depth estimation using focus

measure.

At the end of the report, we give a brief discussion about the future of the project

and how the algorithms can be taken forward. We concluded that though some of the

experiments were not successful, they gave very interesting results, which pave way for

future work.
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CHAPTER 2

BASIC THEORY

We discuss the basics of some of the image processing algorithms in this chapter to gain

an understanding of the theory behind the project.

2.1 Position from Acceleration Data

A major part of the project involves estimating the trajectory of motion from accelerom-

eter data. In the current context, we assume that we have access to a three-axis ac-

celerometer alone. The three-axis accelerometer measures physical acceleration, which

is a combination of the acceleration due to gravity and any external force. Further,

the measured values are relative to the mobile frame of reference. Define ax, ay, az as

the acceleration due to external force, gx, gy, gz as the acceleration due to gravity from

the mobile’s frame of reference and âx, ây, âz as the measured acceleration. Hence,

measured acceleration is modeled as

âx = gx + ax + nx

ây = gy + ay + ny

âz = gz + az + nz,

where nx, ny and nz are noise in measurements.For calculating the trajectory, we need

{ax, ay, az}. To obtain these values, we need to subtract the acceleration due to gravity.

However, we have no further information apart from the above equations. To get a good

estimate of the required acceleration, we assume that the gravity vector is quasi-static

when there is only translation in the mobile device. Hence, we estimate the gravity



vector as

gtx = αgt−1
x + (1− α)âtx

gty = αgt−1
y + (1− α)âty

gtz = αgt−1
z + (1− α)âtz,

where α is the LPF constant and lies between 0 and 1. Higher α gives rise to slower

variation in the gravity vector. We found empirically that 0.8 was a good value for the

constant.

Once we have the device acceleration, the equation for finding the trajectory of

motion would be

x(t) =

∫∫ t

0

ax(t)dt

y(t) =

∫∫ t

0

ay(t)dt

z(t) =

∫∫ t

0

az(t)dt.

The discrete time approximation is

x[n] = (
n∑
t

n∑
t

ax[n])×T 2

y[n] = (
n∑
t

n∑
t

ay[n])×T 2

z[n] = (
n∑
t

n∑
t

az[n])×T 2,

where T is the sampling time of the motion sensors. Though this gives a good estimate

of the orientation of the device when there is no motion or the device acceleration when

there is only translation, the method suffers from two drawbacks:

1. The noise in measurement creates a random walk pattern. However, this might
not be of major concern as it would only create a small disturbance in the over all
trajectory.

2. If the estimate of gravity vector is not correct, it would create a constant offset to
the device acceleration. This gives rise to drift, which will grow as t2, giving rise
to wrong trajectory.
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Fig.2.1 explains how the drift can be of serious concern when estimating the trajec-

tory.

Figure 2.1: Plot showing the effect of constant offset to acceleration value. The drift
was iterated from -1% to 1% of the maximum acceleration value. With
even a small error in the estimate, the calculated trajectory goes off the
actual trajectory.

Due to lack of information regarding the orientation of the mobile, which gives rise

to a bad estimate of gravity vector, the drift will exist and make the estimate unreliable.

In section 4, we will see the consequences of have a bad trajectory and possible ways

to rectify the problem.

2.2 Image blur

Image blur is equivalent to low pass filtering in 1D signals. While image blur is desired

in some applications like animation, it is undesirable when taking still photos. Two

types of blurs are of interest in this project, namely defocus blur and motion blur.
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2.2.1 Defocus blur

Defocus blur is caused when the image of the object is not focussed on the sensor. This

arises only in real aperture cases when the focal length of the lens is finite and objects

are at varied distances.

The blur that arises due to defocus can be modeled as a 2D gaussian filtering oper-

ation. Hence, the point spread function is given by

h(x, y) =
1

2πσ2
e

−(x2+y2)

2σ2 ,

where σ depends on the depth of the object from the lens.

The defocus blur can be used in the shape from focus method, which varies one

particular parameter of the system like the lens position or the object position to bring

the object in focus. The idea is to have a focus measure. Pertuz et al. (2013) gives a

good outline of various focus measures used commonly. Further discussion about shape

from focus will be carried out in section 6.

2.2.2 Motion blur

Motion blur occurs due to relative motion between the scene and the camera during the

exposure time. The motion could either be the moving object or the motion induced

due to camera shake. This report deals with the problem of camera shake.

The process of camera shake can be considered as an averaging of multiple sharp

images shifted due to the camera motion. Hence for a planar scene,

ˆim(x, y) =
1

N

N∑
k

im(x− xk, y − yk)

=⇒ ˆim(x, y) =
1

N

N∑
k

δ(xk, yk) ∗ im(x, y)

where δ(xk, yk) is the Kronecker delta and ˆim is the observed image.
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This can be rewritten as,

ˆim(x, y) = (
1

N

N∑
k

δ(xk, yk)) ∗ im(x, y)

=⇒ ˆim(x, y) = h(x, y) ∗ im(x, y)

h(x, y) is called the point spread function. If the image is not a planar scene, then

every point in the scene moves by a different amount due to the camera shake. If we

assume that there is no parallax error, we have,

ˆim(x, y) =
∑
t

δ(
xt

d(x, y)
,

yt
d(x, y)

) ∗ im(x, y)

where d(x, y) is the depth of the image at (x, y). This space variant blurring operation

can be used to calculate depth information from the images, as objects at different

depths will be blurred to a different extent. Calculating d(x, y) gives the depth map

of the image.

2.3 Image deconvolution

The process of removing the blur in the image is known as image deconvolution. De-

convolution can be broadly of two types, blind and non- blind. If the PSF is known a

priori, it is known as non-blind deconvolution, else, it is known as blind deconvolution.

Blind deconvolution is an ill-posed problem, as an infinite combinations of latent image

and PSF can give rise to the observed image. Hence, various constraints are used when

trying to retrieve the latent imageFergus et al. (2006); Krishnan and Fergus (2009);

Levin et al. (2007a); Gupta et al. (2010).For example, an image can be considered as

piecewise smooth function with sharp images. Hence, we can try to reduce the total

variance of the obtained latent imageMoney and Kang (2006); Chan and Wong (1998).

If the blur is caused due to a straight line shaped PSF, analyzing the frequency domain

of the image can help retrieving the PSFOliveira et al. (2007).

On the other hand, non-blind deconvolution is less ill posed than the blind case,

8



as we have the PSF estimate. As discussed in the previous section, the blurred image

can be represented as the convolution of the PSF and the latent image in case of a

planar scene. This transforms into multiplication in the frequency domain. Hence, we

divide the image’s Fourier transform with the PSF’s Fourier transform to get the original

image. i.e

IMlatent(u, v) =
ˆIM(u, v)

H(u, v)
,

where H(u,v) is the DFT of the PSF h(x, y). However, the observed image is further

degraded by noise. Hence, the actual model of the observed image is

ˆim(x, y) = h(x, y) ∗ im(x, y) + n(x, y),

where n(x, y) is the noise. The equation in the frequency domain can be loosely ex-

pressed as

ˆIM(u, v) = H(u, v).IM(u, v) +N(u, v)

IMlatent(u, v) =
ˆIM(u, v)

H(u, v)

=⇒ IMlatent(u, v) = IM(u, v) +
N(u, v)

H(u, v)

Note that h(x, y) has a low frequency structure and noise has a high frequency structure.

Hence, the obtained image will have very high values in the high frequency region due

to the zeros of h(x, y) in the high frequency region.

Wiener deconvolution

Instead of simple division, we reformulate our problem as finding a filter which when

convolved with the observed image would return the latent image. Further, we wish

to reduce the error between the latent image and the image obtained by filtering the

9



observed image, i.e

min E|IM(u, v)− F. ˆIM(u, v)|2

ˆIM(u, v) = IM(u, v).H(u, v) +N(u, v),

where E|.| is the expectation operator. Differentiating with respect to F , we get

F (u, v) =
H∗(u, v)

|H(u, v)|2 + α

=⇒ IMlatent(u, v) = ˆIM(u, v).F (u, v)

=
H∗(u, v). ˆIM(u, v)

|H(u, v)|2 + α

where H∗(u, v) is the complex conjugate of H(u, v) and α is the inverse signal to noise

ratio of the image.

2.3.1 Regularized deconvolution

Since we know that the image blows up at the edges, we can impose a penalty on the

edge weights. Let gx and gy be the horizontal and vertical differentiation filters . Then,

we need

minimize |y − h ∗ x|2 + α|gx ∗ x|2 + α|gx ∗ x|2

=⇒ minimize |Y −HX|2 + α|GxX|2 + α|GxX|2

Where X represents the DFT of x. Differentiating the above equation with respect to

X , we get

X =
H∗Y

|H|2 + α(G2
x +G2

y)

This is called regularized deconvolution. Apart from the simple deblurring algo-

rithms, there are other deconvolution methods, which work by reducing a certain cost

function. Literature on some of these can be found at Long and Brown; Wang et al.

10



(2009); Bioucas-Dias et al. (2006)

2.4 Image registration

Image registration finds application in many areas like medical imaging, aerial photog-

raphy and automated target recognition. In computational photography, image registra-

tion is used in wide number of areas like panorama stitching, depth estimation using

stereo vision and video stabilization.

Image registration involves finding the transform between a pair of images. The

transform could be a simple translation and rotation or a complicated warping. For

simple cases which involves only translation or only rotation, many of the frequency

based methods give good results. For advanced warping, feature based registration is

used. The SIFT based image registration, for example, identifies key points in each

image. Once we have the corresponding points in both the images, the problem is of

estimating the matrix that created this transform.

Note that when there is a large motion between the two images or one of the image

pairs is highly blurred, registration becomes difficult. Section 5 discusses about how

registration can be simplified using data from accelerometer. In this section, we will

look at a simple case of registering image pair which are transformed by shift alone.

2.4.1 Image registration using cross correlation

Let im1 and im2 be the image pairs. Since we are looking at a translation only model,

we have,

im2(x, y) = im1(x− x0, y − y0)

Given these two images, we wish to estimate (x0, y0). A shift in the spacial domain

reflects as a phase multiplication in the frequency domain. Hence, if IM1 is the DFT of

11



im1, then,

IM2(u, v) = IM1(u, v)e−j(
2πx0u
M

+
2πy0u
N

)

Let,

H(u, v) =
IM1(u, v)×IM∗

2 (u, v)

|IM1(u, v)×IM2(u, v)|

=⇒ H(u, v) = e−j(
2πx0u
M

+
2πy0u
N

)

This gives,

h(x, y) = δ(x0, y0)

Hence, the location of peak in h(x,y) will give the shift between the two images.

12



CHAPTER 3

THE DEVICE

Primarily, we want the device to function as an acquisition system which would take

pictures and measure some sensor values. While choosing the mobile platform, we

considered the following features

• The device should be low cost. We are looking at a mobile which would not cost
above Rs. 15,000. This gave us the option to choose Android mobiles or the low
end Windows Phone Mobiles.

• The device should have a good Software Development Kit. Android and Win-
dows Phone both have a very good SDK.

• The device should have accelerometer, gyroscope and manual focus ability.

• The device should have easy image handling capabilities. Here, Windows Phone
was a clear winner due to the powerful Nokia Imaging SDK.

• The device should have TCP/Bluetooth capability. Again, every smart phone
available today has these features.

With the above points in mind and considering the low cost, we chose to go for

Nokia Lumia 520 which features a 5 MP camera, three-axis accelerometer, WiFi and

Bluetooth support. However, the trade off was that we could not get a gyroscope on

the mobile. This would be a serious hindrance for handling rotation of the mobile

along with translation. However, since we were only evaluating the possibilities of

computational photography on the mobile platform, we chose to evaluate the mobile

platform with the accelerometer alone.

From the ease of usage perspective, the Windows Phone 8 SDK has a very simple

interface with coding in C# and GUI design using XAML script. Visual Studio makes it

very easy to create applications (apps) fast. A number of code examples for developing

WP8 apps are available at Network (2013–)



3.1 Device side application

The app is mainly used for logging information to the computer so that algorithms can

be tested off line. The major advantage of this method is that it gives the power of the

computer along with the flexibility to experiment with different kinds of algorithms.

To make the application versatile and useful for future development, we added mul-

tiple features to capture images. A screenshot of the application is given in Fig.3.1.

Figure 3.1: A screen shot of the application.

The top right, Information block serves as a debugging block during the image

capturing process. For example, when taking images with long exposure, it indicates the

number of samples of accelerometer data obtained. The Debug section box indicates

the focus position and other debug information. The focus position can be controlled

by the slide bar which is situated at the bottom of the application.

The Accelerometer box indicates the current value of the accelerometer. The button

titled Click is used for capturing a single long exposure image. Connect button is used

for connecting to the computer using TCP. The Host and the port can be selected in

the fields at the bottom right of the application screen. Apart from these features, the

following features add versatility to the application

• Log images enables continuous logging of the image frames to the computer
when TCP stream is open. With the default setting, the duration between two
frames is close to 20ms.

• Enable delay adds a 500 ms delay between the image retrieved from the image
buffer and the long exposure shot.
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• Enable preview captures an image from the image buffer (which can act as a
latent image) prior to a long shot image.

• Start sensor log enables continous logging of the accelerometer data to the com-
puter when the TCP stream is open.

• Focus sweep records 100 images with varied focus distance and sends them to
the computer.

The application has a 10ms timer, which takes care of all the logging and image

capture functions. While it is more apt to use a separate thread, we found that using a

timer was an easy method.

We discuss some of the methods implemented for logging the data and sending it

over TCP to understand the intricacies involved.

3.1.1 Logging accelerometer data during exposure

When the Click button is clicked, a camera capture sequence is started, which is pro-

grammed to take a picture with an exposure time of 200ms (adjustable). However, by

default, this suspends all other thread activities and is only released once the capture is

complete. This poses the problem that the accelerometer data cannot be logged during

this time, which is very important for estimating the blur kernel . To overcome this, we

use the async mode of camera capture(add ref to async camera capture website). In this

mode, the camera is initialized for capture and it returns to the thread. Meanwhile, a

busy flag is set and accelerometer data is recorded. When this is done, the busy flag is

unset, which stops the data logging. The code snippet is given below

public async void capture(bool get_preview, bool register)
{

// Get image preview
if (get_preview == true)
{

_camera.GetPreviewBufferArgb(preview_image);
}
// Take a picture. Flag busy meanwhile.
cam_busy = true;
// If register mode is enabled, sleep for 500ms.
if (register == true)
{
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await System.Threading.Tasks.Task.Delay(500);
}
await _camsequence.StartCaptureAsync();
cam_busy = false; // Done capture. Unset busy.
transmit = true;
imstream.Seek(0, SeekOrigin.Begin);

}

If an exposure time of 200ms is used, 20 accelerometer values are expected with a

10ms timer. However, close to 70 readings are obtained. This is due to the transfer time

of the image data also included in the capture time. To overcome this problem, a fast

moving image of a single point light source is taken. Frames of 20 samples out of 70

samples of the accelerometer data is used for estimating the best start and end times.

We use these start and end times for all the future kernel estimates.

3.1.2 Sending data over TCP

The TCP communication enables a communication stream between the mobile device

and the computer. With the stream open, it can be treated as a continuous information

channel, with no prior information about the size of the data being sent. To retrieve

data with this asynchronous type of data transmission, we encapsulate the data in key-

words which is known to the computer. This would boil down the problem to searching

for starting and ending keywords for each data type received. For example, if we are

sending a new image, we would use the keywords STIM and EDIM to encapsulate the

image data. An example:

// app_comsocket is the object representing the TCP
connection.

// app_comsocket.Send is used to send data over the
connection.

app_comsocket.Send("STIM\n"); // Start token
app_comsocket.Send(imdata); // Image data
app_comsocket.Send("EDIM\n"); // End token
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3.2 Host side application

Most of the host side application is written in Python. The reason for choosing python

is the vast support available for scientific computing, communication protocols, image

processing support and above all, python being free software. However, some of the

deblurring codes and super resolution are in MATLAB.

The communication from mobile to computer is done using the inbuilt socket mod-

ule in python. As mentioned in section 3.1.2, the data from the mobile is encapsulated

and sent in keywords. These keywords are used to parse the incoming data and split it

accordingly.

A number of functions have been written as part of host side software for data

reception, interpretation and image processing. Some of the main software modules are

discussed below.

3.2.1 TCP data handling

The TCP data handling, as the name suggests is responsible for receiving data from the

mobile, which includes images and motion sensors data. The main functions of this

module involve receiving sharp and blurred image pair, continuously receiving images

and continuously receiving motion sensor data. For example, in order to receive a sharp

and blurred image pair, we need to execute the function get_tcp_data(), which in

turn executes the following:

# Listen to the TCP socket and get data.
dstring = tcp_listen();
# Parse and save the data obtained from TCP
save_data(dstring);
# Return a handle to the data, which consists of images and

the motion sensor data.
return TCPDataHandle(dstring)

For continuous reception of images, we use the following function calls.

# All the images are encapsulated in tokens. Further, all
tokens are
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# Separated by the null character.
strt_token = ’S\x00T\x00I\x00G\x00’
end_token = ’E\x00D\x00I\x00G\x00’
frame_token = ’S\x00T\x00I\x00M\x00’
fstart = ’STIM’
fend = ’EDIM’
# First, receive the data from the mobile.
continuous_recv(strt_token, end_token, frame_token,

’tmp/burst/tokens.dat’)
# Once we have all the data, split it and save the first 100

images.
extract_images(’tmp/burst/tokens.dat’, 100, fstart, fend,

’tmp/burst/src’)

3.2.2 Visualizing sensor data

Another important feature of the host software is the ability to visualize the sensor data

dynamically. This is very useful for understanding the attitude of the device and how

the motion sensor data can be used for operations like video stabilization.

There are two main functions for visualizing the data. The first function shows a

continuous graph of the measured accelerometer value. A screenshot of the graph is

shown in Fig.3.2.

Figure 3.2: Screen shot of live sensor logging.
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The second function is used for visualizing the attitude of the mobile for in plane

motion. With the availability of only the accelerometer, we created a UI for showing the

orientation and the jerk direction, obtained from the velocity vector, both corresponding

to in plane motion. Fig.3.3 an example screen shot.

Figure 3.3: Screen shot of attitude UI. The upper circular graph represents the orien-
tation of the mobile device and the lower rectangular graph represents the
direction of translational motion.
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CHAPTER 4

DEBLURRING

As mentioned in section 2.3, blurring due to motion is not desirable and we wish to

remove it. In this section, we will look at non blind and semi blind deconvolution

techniques.

Prior to deblurring, we need to estimate the blur kernel. As mentioned in 2.1, the

accelerometer data can be used to estimate the trajectory of the camera and thus the PSF

can be estimated. However, since we don’t know the scene depth and there is a drift

due to approximate value of gravity vector, we iterate through various possible depths

and shifts to find the appropriate image.

4.1 Constructing the kernel

Initially, we verify that the trajectory obtained from the sensors can be used to construct

a good kernel estimate. For this purpose, we took a long shot image of a single point

light source. The image obtained would represent the blur kernel. Hence, we could

compare the kernel we constructed and the kernel from the image. An example image

and kernel pair are given in Fig.4.2.



Figure 4.1: Actual image showing the point spread function, which acts as our ground
truth measurement.

Figure 4.2: Kernel constructed from sensors data. The scale is not exact. Further, there
was no drift compensation.

From the above figures, we see that the trajectory estimated from inertial sensors

data gives a good initial estimate for the PSF. Note that the scale has not been calculated

and the drift has not been compensated. The scale and the drift information are available

during the deblurring of the image.

The above example was a good case, where there was little drift. The following

example has a considerable drift, which gives rise to an erroneous kernel.
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Figure 4.3: Actual image showing the point spread function, which acts as our ground
truth measurement.

Figure 4.4: Plain kernel and the kernel corrected for drift.

Fig.4.4 shows that there is a significant drift in the trajectory, which is visible in the

first constructed image. We iterated through various possible drifts and found visually

that the drift correction was (0.004284, 0.013347)mm, i.e, the final position is offset by

this amount.

4.2 Deblurring the image

Once we have the approximate kernel, we can perform deblurring. Since we don’t have

the scene depth, we iterate through various depths. We assumed that our kernel was

very accurate and tried estimating the latent image using a simple weiner filter. Some

of the results, along with blind deconvolution output by Xu and Jia (2010) are given

below.
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Figure 4.5: Blurred image and the best deblurred output using wiener filter.

Figure 4.6: Blind deconvolution by Xu and Jia (2010).

The method by Xu and Jia (2010) did not restore the image to a great extent. Using

Wiener filter restored the image to a more sharper form but the intensity at the edges

increased drastically.

As an alternate approach, we used the blind deconvolution algorithm by Abhi-

jith Punnappurath (2014). Instead of a complete blind deconvolution, we used our

kernel as an initial estimate and evaluate it against complete blind deconvolution re-

sult. We found that for highly textured images, the output was the same. However, the

algorithm converged quickly when we used our kernel as an initial estimate. We also

ran our algorithm for very low textured images and found that the results were better

than the blind case and it took the same time to converge. The results have been given

in Fig.4.9.
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Figure 4.7: Actual blurred image.

Figure 4.8: Deblurring using total blind method.

Figure 4.9: Deblurring using our kernel as the initial estimate.

As is visible from the images above, we find that the deblurring method with our

kernel as the initial estimate gives better results.
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CHAPTER 5

IMAGE REGISTRATION

When taking multiple images, it is very likely that the subsequent images will be shifted

and rotated. Consider the case of simple shift. In the absence of noise, we could use

normalized cross correlation to estimate this shift. However, this method would fail

when one of the image is blurred. A more sophisticated method would use feature

matching to get a good estimate of a the shift. However, the drawback is that it is

computationally intensive.

To overcome this problem, we can use the inertial sensor data on the mobile to

get a good estimate of the change in orientation, since the inertial sensors give direct

information about the motion during the exposure time.

Before we go into the case of pure translation, we need to understand the limitation

of our current setup. We have a 3-axis accelerometer giving us the acceleration along

x, y and z axes, relative to the mobile frame of reference. Since our setup constrains that

we have only in-plane motion, the acceleration along z axis does not give any informa-

tion. Any generic motion in the plane can be represented by three entities, translation

in the two axes in the plane of motion, namely tx, ty and rotation in the perpendicular

axis, namely, Rz. Hence, we have three unknowns and only two equations from the

two axes, which makes it an indeterminate system. Hence, we constrain the system by

saying that either the system goes through only translation or only rotation. Hence, we

have the following equations:



txi =

∫∫
axdt

tyi =

∫∫
aydt

or

θi = tan−1(ay/ax)

We look at two cases, one of pure translation and another of pure rotation.

5.1 Pure translation

As mentioned in 3.1.1, we can determine the trajectory of the device from the ac-

celerometer data, which is given by

xfinal =

∫ tfinal

tinit

∫ tfinal

tinit

axdt

yfinal =

∫ tfinal

tinit

∫ tfinal

tinit

aydt.

We wish to find the shifts xshift, yshift such that the RMS difference between the first

image and the shifted second image is reduced. i.e

min ||im1(x, y)− im2(x− xshift, y − yshift)||2

The calculated final position is in mm and needs to be converted into pixel dimension.

However, we don’t have the distance of the scene from the camera, which makes it an

ill-posed problem. To overcome this, we iterate through various scales and find out the

correct scale using RMS error. Hence,

(xshift, yshift) = argmink{
∑
x

∑
y

(im1(x, y)− im2(x− k ∗ xfinal, y − k ∗ yfinal))2}
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Note that the maximum shift is bound due to the finite duration. Hence, our search

space is drastically reduced from 360o in the blind case to a small sector(it is not a

straight line due to the drift associated with the accelerometer readings) with the help

of accelerometer data.

Fig.5.2 shows example outputs of the algorithm.

Figure 5.1: Example 1: Registered image pairs.

Figure 5.2: Example 2: Registered image pairs.

Observe that the images are registered very accurately even when one of the images

is blurred. The algorithm was very fast and ran in less than 10s for both the cases.

Further, as we have a good estimate of the direction of motion, finer registration can

be done by increasing the search space, after performing coarse registration using the

above mentioned method.
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5.2 Pure rotation

Assuming only in-plane rotation, we can relate the measured acceleration to world ac-

celeration (in the absence of other forces) as

ax = g cos θ

ay = g sin θ

Where θ is the orientation of the device. Hence, the orientation of the mobile can be

estimated as

θ = tan−1(
ay
ax

)

As in the pure translation case, we take two images, one non-blurred and another

blurred, both separated by 500ms duration. We only rotate the device during this du-

ration. Hence, we can use the acceleration values estimated during this time frame to

correct for the rotation. Note that the process of rotation will also induce a small trans-

lation in the image. This makes the RMS error method of finding the appropriate angle

difficult. We hence use normalized cross correlation, which is independent of the shift.

Thus,

θ = argmaxt
{
F−1

(
F(im1).F(R(im2, θt))

∗

|F(im1).F(R(im2, θt))|

)
}

Where F(.) is the 2D discrete Fourier transform, F−1(.) is the 2D discrete inverse

Fourier transform andR(im, θ) rotates the image by θ degrees.

Fig.5.5 gives three examples of registration using the proposed method.
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Figure 5.3: Example 1: Very high blur and rotation.

Figure 5.4: Example 2: Moderate blur and rotation.

Figure 5.5: Example 3: Very small blur and rotation.

In the first and second example, the first image, which is taken with long exposure

is a highly blurred image. As is evident from the images, the algorithm performs very

good. The third image is a small rotation case and our algorithm performs well for that

case too.

The shift is not accounted for in the above figures. This is due to the absence of any

further information from the motion sensors. The availability of a gyroscope could give

the direction of shift and hence help in further registration.
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CHAPTER 6

DEPTH ESTIMATION

When taking an image, due to the variable depth of the scene, the amount of blur in-

duced at every pixel due to defocus or motion of the camera is different. We use this

information to estimate the depth from images using two methods, namely depth from

motion blur and depth from focus.

6.1 Depth from motion blur

Section 2.2.2 gives a brief discussion about how every point in the image gets blurred

by a different blur kernel due to the depth profile. If we neglect the parallax error,

we can see that the only variation in the blur kernel is the scale. Hence, estimating

the depth profile boils down to estimating the scale of the blur kernel at different points.

Estimating depth from a blurred and latent image has been discussed in Paramanand and

Rajagopalan (2010). However, the method requires estimation of depth at every point,

due to the absence of any motion information. Levin et al. (2007b) uses coded aperture

for extracting the depth profile from the image. However, the paper has good discussion

about estimating depth from two images, which is more apt for our discussion.

In the experimental setup, we capture two images, one with very short exposure

and another with long exposure. Further, along with the two images, the motion of

the camera is estimated by logging the accelerometer values. Thus, we have the latent

image, the blurred image and the blur kernel. We need to estimate the scale of the blur

kernel at each point. Prior to estimating the depth, it is very important that the two

images are aligned. We would show that misalignment could be a major reason for

wrong depth profiles. However, for small shifts, we found that iterating through a small

space to search for the right shifts was enough.

To estimate the depth at each point, we iterate through various blur kernel sizes and

calculate the difference between the blurred image and the blurred latent image for each



scale of the kernel. If the scale is correct at a given position, the error at that point will

be the least and that would be assigned as the depth value. Hence, we can formulate our

algorithm as

k(x, y) = argmind{|im(x, y)blurred − h(x, y, d) ∗ imlatent(x, y)|2}

Where h(x, y, d) is the kernel with scale value of d. While this works for the ideal case,

the real depth map is very noisy. Hence, we low pass filter the error map with a box

filter. This algorithm works very well when there is good texture in the image. Further,

it is necessary that the kernel is very accurate, else the depth map will go wrong.

To verify our algorithm, we first tried estimating depth map in a synthetic case. We

blurred an image with a known depth map and ran our algorithm. The results in Fig.6.2

were obtained.

Figure 6.1: Latent image and synthetic lurred image pair.

Figure 6.2: True depth map and estimated depth map.

The obtained depth map was close to the ground truth depth map. We then tested

our algorithm for real cases. In our experiment, we found that the kernel can go to a

maximum size of 20 × 20 and hence we scaled the kernel size from 1 × 1 to 20 × 20.

We used a filter of size 32×32 for the error map. Some of the experimental results have

been in Fig.6.6.
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Figure 6.3: Latent image and Blurred image pair. This is an example of close up shot.

Figure 6.4: Estimated depth map. Brighter area represents scene closer to the camera.

Observe that the image pair are very well aligned already and the object is well

textured. This made estimation of depth map accurate. However, the following example

is a failure case for estimating depth.

Figure 6.5: Latent image and Blurred image pair. Note that there is a misalignment
between the images.

Figure 6.6: Bad depth map. While the depth calculation at the edges is expected to be
accurate, the obtained depth map has erroneous edge values.
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To find out the reason for a bad depth map, we perturbed the kernel while estimating

depth in synthetic case. It was found that if the images are misaligned or if the kernel is

not accurate, the output depth map was not accurate.

6.2 Depth from focus

Estimating depth from focus is termed as Structure From Focus (SFF). As discussed

in 2.2.1, varying a parameter of the camera system changes the quality of the image at

different depth. We are interested in varying the focus of the camera to vary the sharp-

ness of the image. The sharpness of the image is measured using the focus operator. A

very popular and easily implementable focus operator is the Sum Modified Laplacian

(SML). The Modified Laplacian operator is defined as

∆mI = |I ∗Gx|+ |I ∗Gy|

Gx = [ −1 2 −1 ], Gy = GT
x

The Sum Modified Laplacian operator does a average of the Modified Laplacian over

the neighbors. Thus,

φ(x, y) =
N∑

i=−N

N∑
j=−N

∆mI(x− i, y − i)

When a region is in focus, the SML value is the highest. The experiment consists of

taking 100 images with focus varying from minimum to maximum. For each image,

the SML operator is applied and the appropriate depth for each pixel is when the focus

operation peaks.

When changing the focus value, there is a scaling in the images. The robust way to

correct this would be to register each image with the first image using Fourier Mellin

Transform or feature based image registration. However, we found that finding the scale

of the final image with respect to the first image and interpolating the scale for all other

images worked good. Further, this scaling was consistent across all the experiments and

hence finding the necessary scaling was a one time operation.
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The following image pair is the first and the last image in the 100 images.

Figure 6.7: First and last image of the 100 images. Note that in the first image, the
screw driver handle is in complete focus and in the last image, the book is
in complete focus.

To evaluate our algorithm, we used a filter size of 32× 32. Further, to confirm that

our algorithm returns the correct depth map, we created an all focus image from the set

of images. Fig.6.9 shows the obtained results.
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Figure 6.8: Estimated depth map. Objects nearer to the camera are darker. Observe
how the objects have been segregated.

Figure 6.9: All focused image.

From the depth map, we see that the objects have been segregated on the basis of

depth. Further, the areas of low texture don’t respond very well, as the SML operator is

a high frequency measurement operator.
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CHAPTER 7

CONCLUSION

We have evaluated some of the important image restoration and registration algorithm

with data from a mobile. Some of the results are very promising, while some of them

weren’t very good. In particular, estimating depth from focus, and image registration

have given very good results. Depth estimation from blurred and latent image pair was

good to a certain extent but was very sensitive to the accuracy of the kernel estimate.

The results can be made better with the presence of a magnetometer, which would pro-

vide accurate orientation information, thus making the estimate of trajectory of motion

more accurate. The image deblurring, while proving interesting results like fast conver-

gence and better results in case of low texture images, has good scope for improvement.

While all the codes were run offline for ease of research purpose, we saw that the

algorithms were very simple and efficient due to availability of information from motion

sensors. Hence, porting these algorithms onto a mobile should be an easy task.

7.1 Future work

Along with the evaluation of major algorithms for registration and restoration, the

project has provided a good stage for future development. All the discussed algorithms

can be immediately ported to a mobile platform with great ease, which would provide

a very powerful computational imaging device.

Along from the usefulness of our algorithms, the mobile application is a very ver-

satile one and would serve well for future experiments with different algorithms. With

features like continuous logging of images, continuous logging of motion sensor data,

capturing low exposure noisy image and long exposure blurred image and freely chang-

ing parameters of the camera, the device would prove very useful for working on com-

putational imaging on a mobile platform.



Apart from the sunny side of the project, there were some parts which were not

addressed appropriately. Not much effort was put into writing a more efficient semi-

blind deconvolution algorithm. However, this was partly not possible due to absence

of magnetometer on our device. Further, the mobile currently does all the job using a

10ms timer, which might be inefficient. Unloading the work onto a separate thread will

not only make it neat, but it would make it much more efficient.

We also started working on multi-frame super-resolution but were not able to go

further due to time constraints. As registration forms a major part of super-resolution,

the data from the inertial sensors can greatly aide in reducing the complexity of this

step.

We are looking forward to open our code to public so that people who are interested

can contribute. The code will be the property of the lab and the author of the report

would like to credit all the work to the lab.
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